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Abstract

Fixed size πps sampling with prescribed inclusion probabilities is considered. It is discussed
whether there is a best πps design. Several candidates are presented, as the Sampford
design, the adjusted conditional Poisson design, the adjusted Pareto design, and some
other designs. No definite conclusion is presented.

1. Introduction

A population of units 1, 2, . . . , N is considered. We want to take a sample without re-
placement of size n according to given inclusion probabilities π1, π2, . . . , πN with sum∑N

i=1 πi = n. The inclusion probabilities are assumed to be roughly proportional to the
yi-values of an interesting y-variable. We intend to estimate the population total by the
Horvitz-Thompson estimator

ŶHT =
N∑

i=1

yi

πi
Ii,

where Ii is 1 if unit i is sampled and otherwise 0. We set ai = y̆i = yi/πi and then
ŶHT =

∑N
i=1 aiIi. The variance of the HT-estimator can be written as

V ar(ŶHT ) = aT Σa,

where Σ = (cij) is the matrix of covariances cij = Cov(Ii, Ij) with cii = di = πi(1 − πi).
We also have, the Sen-Yates-Grundy form of the variance:

V ar(ŶHT ) =
1
2

∑
i,j

c̃ij(ai − aj)2, where c̃ij = −cij .

Dividing here c̃ij by πij = E(IiIj) and then summing instead over i and j in the sample,
we get the SYG variance estimator.

There is no sampling design with smallest variance uniformly in a. In fact, if such a design
with covariance matrix Σ0 existed, we would have aT Σ0a ≤ aT Σa for all a and all other
Σ with diagonal elements di = πi(1− πi), i = 1, . . . , N. Then D = Σ−Σ0 ≥ 0 (in matrix
sense) and hence the eigenvalues of D are nonnegative. But they sum to 0 because the
diagonal elements of D are 0 and hence trace(D) = 0. Thus all the eigenvalues are 0 and
hence Σ = Σ0, which is a contradiction.
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We have not any superpopulation in mind except possibly the simplest one: ai = α + εi,

where the εis are uncorrelated with mean zero and variance σ2. For that model, with E here
denoting expected value w.r.t. the superpopulation, we have, since

∑
j; j 6=i cij ≡ −πi(1−πi),

E(V ar(aT I)) =
1
2

∑
i,j; i 6=j

c̃ijE((ai − aj)2) =
1
2

∑
i,j; i 6=j

c̃ij2σ2 = σ2
N∑

i=1

πi(1− πi).

Hence all designs are equally efficient with respect to this superpopulation.

So to single out a ’best’ design further considerations are needed. In the literature, e.g.
Brewer et al. (1983), many πps designs are discussed. Some of them are approximate in
the sense that E(Ii) ≈ πi only. Such designs are not considered here. The following three
designs deserve a lot of attention as candidates for being at least very good πps designs.

1. The Sampford design
2. The adjusted conditional Poisson design
3. The adjusted Pareto design.

These are discussed in sections 2 and 3. We give motivations for them and present advan-
tages and drawbacks of them. In section 4 we derive some slightly more theoretical designs
related to the conditional Poisson design. In section 5 and in an appendix we derive and
discuss some further designs, which are of 2nd order type, i.e. are only given by their 2nd
order inclusion probabilities. They are also more theoretical than practical. We illustrate
and compare the methods in section 6 by looking at a small but not trivial population for
which N = 6, n = 3, and π1 = π2 = π3 = 1/3 and π4 = π5 = π6 = 2/3. This population,
the TBM-population, has earlier been considered in Traat et al. (2004). The paper ends
with a brief discussion in section 7.

2. The Sampford, the adjusted conditional Poisson, and the adjusted Pareto
designs

Here we look at the three designs mentioned in the introduction. We present the designs
mainly by their probability functions (pf) p(x) = Pr(I = x), where x = (x1, x2, . . . , xN )
with xi = 0 or 1.

The Sampford design was introduced by Sampford (1967). Its pf is given by

pS(x) = CS

N∏
i=1

πxi
i (1− πi)1−xi ×

N∑
k=1

(1− πk)xk, |x| =
N∑

i=1

xi = n.

It is a profound result that the true inclusion probabilities really equal πi. The constant
CS is inexplicit but otherwise the pf is very explicit. It is possible to sample from this pf by
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first sampling one unit with replacement according to the probabilities πi/n, i = 1, . . . , N,

and then with replacement n − 1 units according to the probabilities p′i ∝ πi/(1 − πi).
If all these n units are distinct, the sample is accepted, otherwise the whole procedure is
repeated. This is often a slow procedure but there are also other methods to sample from
the pf (e.g. Grafström, 2005).

The adjusted conditional Poisson design was introduced by Hajek (1964, 1981). Tillé
(2005) gives it a careful treatment. The pf is

pCP (x) = CCP ×
N∏

i=1

pxi
i (1− pi)1−xi , |x| = n,

where pi with
∑N

i=1 pi = n must be chosen so that the desired inclusion probabilities πi

are obtained. Hajek presented various approximations but nowadays it is also possible to
calculate the desired pis numerically by a computer program (e.g. Tillé, 2005). A simple
recent good approximation is, with d =

∑N
k=1 πk(1− πk),

pi

1− pi
∝ πi

1− πi
exp(

1− πi

d
).

This approximation was derived in Bondesson et al. (2006) via the assumption that pCP (·)
is close to the Sampford pf. It turns out to yield a very good approximation. To sample
from the conditional Poisson design is easy, one samples from the Poisson design (inde-
pendent Iis, with Ii ∼ Bin(1, pi) ) but only samples of the desired size are accepted.

The Pareto design was introduced by Rosén (1997a,b). The main idea dates back to
Ohlsson (1990) and Saavedra (1995). Target probabilities λi such that

∑N
i=1 λi = n are

used. Let U1, U2, . . . , UN be random numbers from U(0, 1) and let

Qi =
Ui/(1− Ui)
λi/(1− λi)

, i = 1, . . . , N,

be ranking variables. Now select the n units with the smallest Qis. If we put λi = πi,

i = 1, . . . , N, the true inclusion probabilities will approximately equal the πis but not
exactly. It is possible to make an adjustment so that the true inclusion probabilities will
be πi (Aires, 2000). A very good approximation in this direction is provided by, with
d =

∑N
k=1 πk(1− πk),

λi

1− λi
∝ πi

1− πi
exp(−

πi(1− πi)(πi − 1
2 )

d2
).

It is derived in Bondesson et al. (2006) from the assumption that the adjusted Pareto pf
is close to the Sampford pf. Hence the Qis above, with λi = πi, only have to be multiplied
by the factor exp(πi(1− πi)(πi − 1

2 )/d2) to yield a sample with inclusion probabilities πi.
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The pf for the Pareto design is given by

pPar(x) =
N∏

i=1

λxi
i (1− λi)1−xi ×

N∑
k=1

ckxk,

where the constants ck are given by certain integrals (Traat et al., 2004, Bondesson et al.,
2006). Approximately, ck ∝ 1− λk, which shows that the Pareto and the adjusted Pareto
pfs are close to the Sampford pf.

3. Advantages and drawbacks of the designs

The sampling designs in section 2 have pfs that are very close to each other. Should one
of these designs be preferred? We look here at advantages and drawbacks of each of them,
in the order: Sampford sampling, Pareto sampling and conditional Poisson sampling.

Sampford sampling. The main advantage of this design is that the pf is very explicit.
A main drawback has been that the original methods to get a Sampford sample are slow.
However, since the pf is explicit except for the normalizing constant, one can easily use
MCMC methods as Gibbs sampling to sample from it. There are now also very rapid
methods that use Pareto sampling in a first step and then acceptance/rejection technique
(Bondesson et al., 2006, Grafström, 2005). Another small drawback is that there is no
known optimality property of Sampford sampling.

Pareto sampling. The big advantage of this method is that it is very easy to get a
sample. Without adjustment the method gives a slight bias of the estimators. Although
the bias is small, it is slightly disturbing and therefore one may advocate at least simple
adjustment; cf. section 2. Another advantage of the method is that it permits the use
of permanent random numbers. A drawback of the method is that there is no simple
pf. It is also complicated to calculate the true inclusion probabilities. The method has
no known optimum property except that it is asymptotically the best method among all
order sampling procedures.

Adjusted conditional Poisson sampling. A main advantage of this design is that the
entropy −

∑
p(x) log(p(x)) is maximized under the given restrictions (Hajek, 1981). Thus

the probabilities are spread over the possible samples as much as possible in some sense.
The probability function belongs to an exponential family. A drawback is that the pf is
not very explicit since the pis must be calculated. Another drawback is that the standard
rejective procedure for sampling takes some time for large populations and samples but
there are list-sequential methods also (Chen & Liu 1997, Öhlund, 1999, Traat et al., 2004,
Tillé, 2005). There are also rapid methods based on preliminary Pareto samples which are
accepted or rejected. (Bondesson et al., 2006, Grafström, 2005).
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4. Other designs related to the adjusted conditional Poisson design

Using two different starting points, we derive some further designs related to the conditional
Poisson design.

The maximum entropy property for the adjusted conditional Poisson design can be ex-
pressed in another way too. Let pI(x) denote the pf for Poisson sampling with probabilities
πi, i = 1, 2, . . . , N. For a fixed size design with pf p(x) and inclusion probabilities πi, let us
minimize the Kullback-Leibler divergence KL =

∑
x; |x|=n p(x) log(p(x)/pI(x)). We have

KL =
∑

x; |x|=n

p(x) log p(x) −
∑

x; |x|=n

[
p(x)

N∑
i=1

(xi log πi + (1− xi) log(1− πi))

]

= −Entropy +
N∑

i=1

log πi

∑
x; |x|=n

xip(x) + log(1− πi)
∑

x; |x|=n

(1− xi)p(x)


= −Entropy +

N∑
i=1

(πi log πi + (1− πi) log(1− πi)).

Now since the entropy is maximized for the adjusted conditional Poisson pf, which can
be proved by a use of Lagrange multipliers, it follows that KL is minimized for that pf.
Of course, one could then also try to minimize another distance measure, the squared
Hellinger metric

d2
H =

∑
x

(
√

p(x)−
√

pI(x))2 = 2 − 2× EI(

√
p(x)
pI(x)

)

given that
∑

x xip(x) = πi, i = 1, 2, . . . , N, and p(x) = 0 for |x| 6= n. It is more difficult
to minimize d2

H but it is possible for small populations for which the number of different
samples is limited. It would have been some extra support for the adjusted conditional
Poisson design if the ’Hellinger design’ had been equal to that design. As will be seen in
section 6 it is not the case.

The maximum entropy for the adjusted conditional Poisson design ought to guarantee that
the variance of the HT-estimator is small though not in a very direct way. Since p log p is
a limit of p(pε − 1)/ε as ε ↓ 0, we see that maximum entropy corresponds to minimization
of

∑
x; |x|=n(p(x))1+ε for an ε close to 0. In this connection, Hölder’s inequality may give

some additional insight. We have, with xi = Ii and Ŷ (x) = ŶHT ,

V ar(Ŷ ) =
∑

x;|x|=n

(Ŷ (x)−Y )2p(x) ≤

 ∑
x; |x|=n

(p(x))1+ε

 1
1+ε

 ∑
x; |x|=n

(Ŷ (x)− Y )2
1+ε

ε

 ε
1+ε

.
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But of course here we could also use ε = 1 (Cauchy’s inequality) or ε = ∞. This would
lead to designs where we minimize∑

x; |x|=n

(p(x))2 or max
x; |x|=n

p(x)

given the restrictions. At least for symmetry reasons, it may seem more natural to use
ε = 1 than ε very close to 0. We call these designs the minsum−p2 and the minmax−p

designs, respectively. They are more difficult to manage than the conditional Poisson
design but at least for small populations and samples they can be handled.

5. Some second order designs

In this section we look at designs defined by 2nd order inclusion probabilities only. Al-
though it is not completely true that in sampling higher order inclusion probabilities are
irrelevant, we focus on the 2nd order ones here.

Hajek (1981) thought that it would be desirable to have a design with cij = Cov(Ii, Ij)
of the simple product form cij = −cicj , i 6= j. Then there is a simple expression for the
variance of the HT-estimator. Moreover a good approximation of the covariances of the
adjusted conditional Poisson design is obtained. It is possible to solve these equations by
iterative methods but the solution is inexplicit. The solution is of the form

cH
ij = −πi(1− λi)πj(1− λj)∑

πk(1− λk)
,

where λi ≈ πi. Hajek was not able to show that there really is a sampling design with the
derived covariances and the 2nd order inclusion probabilities πij = cH

ij + πiπj . Nowadays
at least for small populations one can use linear programming to find such designs: we
should solve the linear equations

∑
x; |x|=n xixjp(x) = πij for p(x) under nonnegativity

restrictions. It is also possible to use a pf of the form p(x) =
∏N

i=1 πxi
i (1 − πi)1−xi Q(x),

where Q is a quadratic form that has to be calculated (Lundqvist & Bondesson, 2005).

Hajek also derived his product form by maximizing the ’entropy’
∑

i,j; i 6=j cij log(−cij).
Bondesson et al. (2006) instead minimized the measure

SSCorr =
∑

i,j; i 6=j

ρ2
ij ,

where ρij = Corr(Ii, Ij). The restrictions
∑N

j=1 cij = 0 together with Lagrange multiplier
technique show that there is an explicit solution:

cBTL
ij = −πi(1− πi)πj(1− πj)(γi + γj), i 6= j,
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where

γi =
1

d−2πi(1−πi)

1 +
∑ πk(1−πk)

d−2πk(1−πk)

with d =
∑

πk(1− πk).

Most often these covariances are very close to cH
ij . Of course, to minimize SSCorr gives in

some sense as much pairwise independence as possible to the inclusion variables Ii. We
also have, with ai = yi/πi, ρ̃ij = −ρij , and di = πi(1− πi), by Cauchy’s inequality,

V ar(ŶHT ) = V ar(
∑

aiIi) =
1
2

∑
i,j; i 6=j

c̃ij(ai − aj)2

=
1
2

∑
i,j; i 6=j

ρ̃ij

√
didj (ai − aj)2 ≤ 1

2

√
SSCorr×

√ ∑
i,j; i 6=j

didj(ai − aj)4.

For a fixed population and fixed inclusion probabilities, the last factor above is constant.
However, we can affect SSCorr and by minimizing it we get in a direct way some guarantee
that V ar(ŶHT ) becomes small.

There are several simple variants of the approach above. Instead of focusing on the corre-
lation, we may focus on the covariance. Minimizing the sum of squared covariances under
the appropriate restrictions, we get the solution:

cij =
1

N − 2

(
d

N − 1
− πi(1− πi)− πj(1− πj)

)
, i 6= j.

Often this is not a useful solution since the signs of the covariances may vary. They
should preferably be nonpositive to give a stable Sen-Yates-Grundy variance estimator.
Instead of Cauchy’s inequality, we may use Hölder’s inequality. In particular, we may
use Hölder’s inequality with the exponents p = ∞ and q = 1. This leads to second order
minimax-designs.

We now turn to such designs and use first the covariance. Let ai = yi/πi and a =
(a1, a2, . . . , aN )T . Set 1 = (1, 1, . . . , 1)T . Then a = ā1+b, where b = (a1 − ā, . . . , aN − ā)
is orthogonal to 1. Now, since

∑
Ii = n,

V ar(ŶHT ) = V ar(aT I) = V ar(bT I) = bT Σb ≤ λmax||b||2 = λmax

N∑
i=1

(ai − ā)2,

where λmax is the maximal eigenvalue of Σ. Now we could try to choose a covariance
matrix Σ with given diagonal elements di = πi(1− πi) and eigenvector 1 with eigenvalue
λ1 = 0 and such that its maximal eigenvalue is minimal. We should add the condition
that c̃ij ≥ 0, i 6= j, where c̃ij = −cij . This is a problem that in some cases can be solved.
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We can alternatively describe the problem as follows. We have

V ar(aT I) =
1
2

∑
i,j;i 6=j

c̃ij(ai−aj)2 ≤ max
i,j; i 6=j

c̃ij
1
2

∑
i,j; i 6=j

(ai−aj)2 = max
i,j; i 6=j

c̃ij×N
N∑

i=1

(ai−ā)2.

Now we should try to find a covariance matrix with 1 as eigenvector with eigenvalue 0 and
such that maxi,j; i 6=j c̃ij is minimal. Additionally we should require that c̃ij ≥ 0, i 6= j, to
get a stable variance estimator. This is a problem that in small cases can be solved by
linear programming for determination of the appropriate c̃ij . Often, but not always the
solution is of the form that the matrix has all its elements in the row with the largest
di = πi(1− πi) equal and if that row is the first row then equal to −d1/(N − 1) (since all
rows sums are 0). We then have

V ar(aT I) ≤ Nd1

N − 1

N∑
i=1

(ai − ā)2.

In fact, in this case the inequality becomes an equality for a ∝ (N − 1, −1, −1, . . . , −1)
which is an eigenvector with eigenvalue Nd1/(N − 1). Hence the inequality is sharp in
some sense.

We can also use minimax designs w.r.t. the correlation. We have, with di = πi(1− πi),

V ar(aT I) ≤ max
i,j; i 6=j

ρ̃ij
1
2

∑
i,j; i 6=j

(ai − aj)2
√

didj = max
i,j; i 6=j

ρ̃ij (
N∑

i=1

√
di)2

N∑
i=1

(ai − ¯̄a)2p′i,

where p′i ∝
√

di with
∑

p′i = 1 and ¯̄a is a weighted mean. We may therefore try to minimize
max ρ̃ij under simple restrictions (see below). An alternative, but not equivalent approach,
is to set bi = ai

√
di and then use the inequality

V ar(aT I) = bT Rb ≤ λmax||b||2

for the correlation matrix R. The maximal eigenvalue of R should then be minimized
under the restrictions that (

√
d1,

√
d2, . . . ,

√
dN )T is an eigenvector of R with eigenvalue 0

and ρ̃ij ≥ 0, i 6= j.

6. Example: The TBM population

Here we return to the TBM-population in section 1 with N = 6, n = 3, and π1 = π2 = π3 =
1
3 , π4 = π5 = π6 = 2

3 . The population is simple but it illustrates many things in a good
way. There are 20 possible samples of size n = 3 but only 4 with distinct probabilities:
{1, 2, 3}, {1, 2, 4}, {1, 4, 5}, {4, 5, 6}. Each of the samples 2 and 3 has 8 variants. We set
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p1 = π123, p2 = π124, p3 = π145, p4 = π456. Then p1 +6p2 +3p3 = 1/3 and 3p2 +6p3 +p4 =
2/3 implying that p1+9p2+9p3+p4 = 1. It is easy to experiment with this population since
there are only a few parameters to vary, e.g. p1 and p2. In Table 1 different characteristics
have been calculated for all the designs considered.

Table 1: The TBM-population; 2nd order inclusion probabilities, sample probabilities,
and some other characteristics for seven different sampling designs.

MinSSCorr Sampford Pareto(adj) CP(adj) Hellinger minsum-p2 minmax-p

π12 0.06667 0.06918 0.06973 0.07081 0.07170 0.04762 0.03030
π14 0.17778 0.17610 0.17574 0.17501 0.17442 0.19048 0.20202
π45 0.400 0.40252 0.40306 0.40415 0.40503 0.38095 0.36364

p1 0 0.00629 0.00647 0.00686 0.00730 0 0
p2 0.02222 0.02096 0.02109 0.02132 0.02147 0.01587 0.01010
p3 0.06667 0.06709 0.06678 0.06619 0.06574 0.07937 0.09091
p4 0.20 0.20126 0.20272 0.20556 0.20780 0.14286 0.09091

SSCorr 1.2 1.2025 1.2037 1.2071 1.2103 1.3469 1.7355
max ρ̃ij 0.20 0.2075 0.2092 0.2125 0.2151 0.2857 0.3636
Entropy 2.7080 2.7150 2.7151 2.7152 2.7151 2.6796 2.5976

There are several solutions, p = (p1, p2, p3, p4) in the MinSSCorr case. Above an extreme
solution is given. All the different designs considered in section 5 lead for this simple
population to the MinSSCorr solution in the second column. Since di = πi(1− πi) ≡ 2/9,

it does not even matter whether we consider the correlation or the covariance. Because of
the very symmetric character of this design, ρij ≡ −0.2 for i 6= j, one may think that this
is a very good solution in this simple case. Its entropy can be increased to 2.7142 by the
choice of a less extreme MinSSCorr design among the possible variants. The Sampford,
the Pareto-adjusted, the CP-adjusted, and the Hellinger designs do not agree with the
MinSSCorr design although they are very close to it. These latter four designs are pairwise
very equal in this example with {Sampford, Pareto(adj)} and {CP(adj), Hellinger} as the
pairs. This is a relation that is true in general as found by Lundqvist (2006). The minsum-
p2 and the minmax-p designs seem a bit extreme compared to the other designs. They
have much higher SSCorr and lower entropy than the other five designs. They have also
very low values of π12 which leads to less stable variance estimators.

It was mentioned in the introduction that for the simple superpopulation model ai = α+εi

with i.i.d. εis, the expected (design) variance of the HT-estimator is the same for all πps
designs with the given inclusion probabilities. We may then also look at the expected
design variance of the Sen-Yates-Grundy estimator of the variance of the HT-estimator.
Assuming that the fourth central moment of εi equals 3V ar(εi) = 3σ4, we got the following
expected values.
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Table 2: Expected values of the design variance of the SYG variance estimator under a
simple superpopulation model.

MinSSCorr Sampford Pareto(adj) CP(adj) ’Hellinger’
1.844σ4 1.816σ4 1.806σ4 1.789σ4 1.778σ4

Thus the Hellinger design gives a slightly more stable variance estimator than the other
included designs. On the other hand, by setting p1 = 0.0813, p2 = 0, p3 = 0.0840, and
p4 = 0.1626, we get the smallest possible expected value: 1.650σ4. Of course, it is well
known that the requirement of a small variance for an estimator is in conflict with the
requirement of a stable variance estimator.

7. Discussion

It is a bit annoying that it is not really possible to single out a best fixed size πps sampling
design. There is no doubt about that at present the (adjusted) Pareto design is the best
one to select a sample easily. On the other hand the adjusted conditional Poisson design
has a very attractive maximum entropy property. The Sampford design has a simple and
nice pf and is very attractive from that point of view. Fortunately these three designs are
close to each other. Brewer (2002) classifies the Pareto design as a high entropy design.
The minimax designs considered in section 5 are at present not very practical but focus
more directly on making the variance small than the other designs. Gabler (1990) presents
many results on strongly related minimax designs.

Finally, it is appropriate to add that if there is relevant auxiliary information, many other
designs are possible, as e.g. systematic πps sampling designs, and may be better than the
ones considered here.
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