
THE ROLE OF MODELS IN MODEL-ASSISTED
AND MODEL-DEPENDENT ESTIMATION FOR
DOMAINS AND SMALL AREAS
Risto Lehtonen1

1 University of Helsinki, Finland
e-mail: risto.lehtonen@helsinki.fi

Abstract

Estimation for population subgroups or domains is investigated for model-assisted general-
ized regression (GREG) and model-dependent EBLUP estimators, under different model choices and
under unequal probability sampling. Two particular issues are addressed: (i) how to account for the
domain differences in the model formulation, and (ii) how to account for the underlying unequal prob-
ability sampling design. Results on bias and accuracy of GREG and EBLUP are based on Monte Carlo
experiments where PPS samples were drawn from an artificially generated population. The bias of
GREG estimator remained negligible for all model formulations considered, and accuracy improved
when including the PPS size variable in the assisting model. A “double-use” of the auxiliary data both
in the sampling design and in the estimation design appeared favorable. In GREG, the mixed model
formulation did not outperform the fixed-effects model formulation. For EBLUP, the model choice
was critical and if not successful, large bias was introduced. For unweighted EBLUP, substantial bias
reduction was attained with the inclusion of the PPS size variable in the model. We propose a new
weighted EBLUP estimator for unequal probability sampling designs, as an alternative to the un-
weighted EBLUP. The results show that the weighted EBLUP behaves better that the unweighted
EBLUP, but still the bias can be substantial and can dominate the MSE, which invalidates the con-
struction of proper confidence intervals.
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1 Introduction

Estimation of reliable statistics for population subgroups or domains constitutes an area of
increasing importance in the production of official statistics. A good example is the estima-
tion of the number of unemployed and employed, and the accompanying standard errors, for
regional areas in a country by using sample survey data from a Labour Force Survey and aux-
iliary data taken from the available register and census data sources. Typically, a LFS is
planned to produce reliable statistics for the entire population and large or major areas. Stan-
dard design-based direct estimators, such as the Horvitz-Thompson estimator, are often used
for such cases. The task can become challenging when the number of sample elements in a
number of domains remains small or minor. In this case, more advanced methods that effec-
tively use the available auxiliary information are needed.

Methods available for the estimation of totals for domains and small areas include model-
assisted design-based estimators, referring to the family of generalized regression (GREG)
estimators (Särndal, Swensson and Wretman 1992, Estevao and Särndal 1999, 2004), and
model-dependent techniques, such as the EBLUP estimator (Empirical Best Linear Unbiased
Predictor) and synthetic estimators (Ghosh 2001, Rao 2003). Properties of these estimator
types are discussed for example in Lehtonen and Veijanen (1998, 1999) and Lehtonen, Vei-
janen and Särndal (2003, 2005). The documentation of the EURAREA project includes use-



ful comparative materials on properties of model-dependent estimators (EURAREA Consor-
tium 2004, Heady and Ralphs 2005).

Known design-based properties related to bias, precision and accuracy of model-assisted es-
timators and model-dependent estimators are summarized in Table 1. Model-assisted estima-
tors are approximately design-unbiased by definition, but their variance can become large in
domains where the sample size is small. Model-dependent estimators are design-biased: the
bias can be large for domains where the model does not fit well. The variance of a model-
dependent estimator can be small even for small domains, but the accuracy tends to be poor
because the squared bias often dominates the mean squared error (MSE), as shown for exam-
ple by Lehtonen, Veijanen and Särndal (2003 and 2005). The dominance of the bias compo-
nent together with a small variance can cause poor coverage rates and invalid confidence in-
tervals for a model-dependent estimator. For model-assisted design-based estimators, on the
other hand, valid confidence intervals can be constructed. Typically, model-assisted estima-
tors are used for major or not-so-small domains and model-dependent estimators are used for
small domains where model-assisted estimators can fail.

Table 1. Design-based properties of model-assisted and model-dependent estimators for do-
mains and small areas.

Design-based model-assisted
methods - GREG family

Model-dependent methods
SYN and EBLUP

Design bias Design unbiased (approximately)
by the construction principle

Design biased
Bias does not necessarily
approach zero with increasing
domain sample size

Precision
(Variance)

Variance may be large for small
domains
Variance tends to decrease with
increasing domain sample size

Variance can be small even for
small domains
Variance tends to decrease with
increasing domain sample size

Accuracy
(Mean Squared
Error, MSE)

MSE = Variance
(or nearly so)

MSE = Variance + squared Bias
Accuracy can be poor if the bias
is substantial

Confidence
intervals

Valid intervals can be
constructed

Valid intervals not necessarily
obtained

Survey statistician often faces challenging methodological choices when aiming at reliable
estimation of population totals for domains and small areas. These choices include, for exam-
ple, the inferential framework, model type (mathematical form, specification, parametriza-
tion, estimation of model parameters), and estimator type (point estimator, estimator of vari-
ance or MSE) for the unknown domain totals. Related to the problem of model choice, or the
role of the model in model-assisted estimators and in model-dependent estimators, the two
questions of special interest in this study are:

(i) How to account for the domain differences in the model formulation (relevant for model-
assisted estimators in particular)?

(ii) How to account for the underlying unequal probability sampling design (relevant for
model-dependent estimators in particular)?

We discuss points (i) and (ii) to some extent from a design-based perspective, under the fixed
finite population approach. More specifically, we compare the relative performance (bias and
accuracy) of the two estimator types of domain totals, GREG, and EBLUP, under different
model choices. A continuous response variable is assumed. In the construction of models we



use both linear fixed-effects models and linear mixed models, where random effects are in-
cluded in addition to the fixed effects. We fit the linear models with different parametriza-
tions. In the estimation of the model parameters, we use both weighted and unweighted esti-
mation procedures.

An underlying unequal probability sampling design is assumed. The case of unequal prob-
ability sampling is of importance for practical purposes in official statistics and many fields
of empirical research. Without-replacement type fixed-size Probability Proportional to Size
sampling (systematic PPS) was selected to represent an example of an unequal probability
sampling design. This study extends the case of equal probability sampling investigated in
Lehtonen, Särndal and Veijanen (2003, 2005) to unequal probability sampling designs.

The working paper is organized as follows. Chapter 2 introduces our notation and models and
estimators used. Results for GREG and EBLUP estimators are given in Chapter 3. Conclu-
sions are in Chapter 4.

2 Methods

2.1 Models and estimators of domain totals

We are interested in the estimation of totals of a continuous response variable y for the do-
mains of interest. Availability of powerful auxiliary information is essential for the estimators
of domain totals considered. We assume that we have access to unit-level data, which include
domain membership indicators and vectors of auxiliary x-variables, for all units in the popu-
lation. The auxiliary data vector also contains the size variable used in the PPS sampling pro-
cedure. The auxiliary data are incorporated in the estimation procedure by an appropriate
model. Thus, the choice of the model that underlies the GREG, SYN and EBLUP estimators
of domain totals is considered important.

Our question (i) was “How to account for the domain differences in the model formulation?”. 
The domain differences can be accounted for by a proper model formulation. Basically, there
are two options to facilitate the domain differences: (1) introduction of domain-specific fixed
effects in the model, and (2) accounting for the domain differences by domain-specific ran-
dom effects, such as random intercepts. It is obvious that these options are relevant for
model-assisted estimators in particular. The reason is that in a standard GREG setting, a
fixed-effects linear model is routinely used as the assisting model (Estevao and Särndal 1999,
2004), and a GREG estimator that uses a mixed model, the MGREG estimator, has been in-
troduced only recently (Lehtonen and Veijanen 1999, Lehtonen et al. 2003, see also Gold-
stein 2003, p. 165). On the other hand, a mixed model formulation has a long tradition in the
context of EBLUP estimation of small area totals (Fay and Herriot 1979, Rao 2003). The
problem of model choice is discussed in a more general spirit in Firth and Bennett (1998).

To throw some light on question (ii) “How to account for the underlying unequal probability
sampling design?”, we study the different options to incorporate the information of the sam-
pling design into the estimation procedure. In the modelling phase, there are two main op-
tions to account for the sampling design: (a) the incorporation of sampling weights in the es-
timation of model parameters, and (b) the inclusion of sampling design variables as additional
covariates in the model. By default, sampling weights are incorporated in the estimation pro-
cedures for all assisting models of GREG estimators. As a rule, sampling weights are ignored
in the estimation procedures for SYN estimators.

Typically, the underlying mixed model of a standard EBLUP estimator is fitted in an un-
weighted manner. Rao (2003) introduced a pseudo EBUP estimator, where sampling weights
are included in the construction of the EBLUP estimator, but the parameters of the mixed
model are estimated by unweighted techniques. As an alternative to the unweighted EBLUP



and pseudo EBLUP, we will introduce a new EBLUP estimator, where sampling weights are
incorporated in the estimation of parameters of the underlying mixed model. We will also
compare options (a) and (b) in their successfulness in accounting for the sampling design. It
is obvious that these options are relevant for EBLUP estimators in particular.

We study the bias and accuracy properties of the estimators of domain totals by empirical
methods. Our Monte Carlo simulation experiments consisted of repeated draws of systematic
PPS samples from an artificially constructed fixed finite population.

Table 2 shows the model-dependent and model-assisted estimators to be discussed, in a two-
way arrangement by estimator type and by model choice. Each of the rows corresponds to a
different model choice. CC model (common intercepts, common slopes) is one whose only
parameters are fixed effects defined at the population level; it contains no domain specific
parameters. We obtain SYN-CC and GREG-CC estimators. SC model (separate intercepts,
common slopes) is one having at least some of its parameters or effects defined at the domain
level. These are fixed effects for SYN-SC and GREG-SC and random effects for EBLUP-SC,
EBLUPW-SC and MGREG-SC. Table 2 also shows the estimation methods that are used in
the estimation of model parameters.

To address points (i) and (ii) of Chapter 1, we discuss in more detail GREG-SC and
MGREG-SC for GREG family estimators and EBLUP-SC and EBLUPW-SC for EBLUP
family estimators.

Table 2. Schematic presentation of the model-dependent and model-assisted estimators of
domain totals for a continuous response variable by model choice and estimator type, under
unequal probability sampling.

Model choice Estimator type

Model
abbreviation

Model
specification Effect type

Estimation
of model
parameters

Model-
dependent
estimators

Model-assisted
estimators

OLS SYN-CC Not
applicable(**)

CC Common
intercepts
Common slopes

Fixed effects

WLS Not
applicable(*)

GREG-CC

OLS SYN-SC Not
applicable (**)

Fixed effects

WLS Not
applicable(*)

GREG-SC

REML
GLS

EBLUP-SC Not
applicable (**)

SC Separate
intercepts
Common slopes

Fixed and
random

Weighted REML
GWLS

EBLUPW-SC MGREG-SC

OLS Ordinary least squares
WLS Weighted least squares (sampling weights)
GLS Generalized least squares
GWLS Generalized weighted least squares (sampling weights)
REML Restricted (residual) maximum likelihood
Weighted REML Restricted pseudo maximum likelihood (sampling weights)

(*) In SYN, weights are ignored in the estimation procedure by default.
(**) In GREG, weights are incorporated in the estimation procedure by default.



We next introduce the notation used in this study.

Population and sampling design
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Note that we assume the vector value kx and domain membership to be known for every
population unit k U .
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We observe ky for k s . Note that for estimation purposes, sample data and auxiliary data
are merged at the micro level by using unique ID keys that are available in both data sources.

Models for continuous response y

Note that fitted values k̂y are calculated for every k U .

Estimators of domain totals

The predictions  ;̂ky k U differ from one model specification to another. For a given

model specification, the estimator of the domain total
dUd kY y has the following structure

for the three estimator types (SYN, GREG, EBLUP):
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Note that d̂SYNY and d̂EBLUPY rely heavily on the truth of the model, and can be biased if the

model is misspecified. On the other hand, d̂GREGY has a second term that protects against
model misspecification.

We adopt the following conventions (Table 2). In SYN-CC, SYN-SC, GREG-CC and
GREG-SC, a fixed-effects model formulation is assumed. A mixed model is assigned for
EBLUP-SC, EBLUPW-SC and MGREG-SC estimators.

Measures used in Monte Carlo simulations

In Monte Carlo simulation experiments, by using estimates (̂ )d vY s from repeated samples
; 1,2,...,vs v K , we computed for each domain 1,...,d D the following Monte Carlo sum-

mary measures of bias and accuracy.

(i) Absolute relative bias (ARB), defined as the ratio of the absolute value of bias to the true
value:

1

1
(̂ ) /

K

d v d d
v

Y s Y Y
K 



(ii) Relative root mean squared error (RRMSE), defined as the ratio of the root MSE to the
true value:

2

1

1 ˆ( ( ) ) /
K

d v d d
v

Y s Y Y
K 



Details of the simulations

There were 100 domains in the population. The size of domain d was proportional to
exp( )dq , where dq was simulated from U(0,2.9). Each observation was allocated to a do-
main by geometric probability: intervals of length exp( )dq were concatenated and a random
point was chosen in (0, exp( )d dq ). The interval containing the point determined the domain
of the observation.

There were 47 minor domains, 19 medium-sized domains and 34 major domains in the popu-
lation. These three classes were defined on the basis of expected sample size ( / )dn N N : less
than 70, 70-119 and 120 or more units, respectively. The smallest domain of the generated
population had 1,711 units and the largest had 28,296.

Model-assisted GREG estimators
ˆ ˆ ˆ( )

Model-dependent SYN estimators
ˆ ˆ

Model-dependent EBLUP estimators
ˆ ˆ
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d d
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The variable 1x is the size variable used in PPS sampling. The variable was simulated from
uniform distribution U(1,11). Another auxiliary variable 2x was simulated from N(0,9). The
random effects du were simulated independently from N(0,0.25). The error term followed
N(0,1).

Responses were simulated as

1 21 2 1.5 ( )k k k d ky x x u k d    

Correlations of the variables in the population were: 1( , ) 0.779corr y x  , 2( , ) 0.607corr y x 
and 1 2( , ) 0.001corr x x  . Domain means of the response variable were approximately equal,
but the totals differed considerably: The means of domain totals were 45,614 for minor do-
mains, 117,308 for medium domains and 241,527 for major domains.

Our population size is N = 1,000,000 and sample size n = 10,000. In Monte Carlo experi-
ments, K = 1000 independent systematic PPS samples were generated. The inclusion prob-
abilities are 1 1/ kk k knx x   . The weights 1/k ka  varied between 54.6 and 596.5.

3 Results

3.1 GREG estimators

We first discuss results for GREG estimators. Our point (i) devoted to GREG was “How to 
account for the domain differences in the model formulation”. This is demonstrated by the 
eight different model formulations in Table 3. In models A1, B1, C1 and D1, the domain dif-
ferences are accounted for by domain-specific fixed effects 0d . In models A2, B2, C2 and
D2, we use random intercepts 0 du , where 0 is the fixed intercept common for all do-
mains, and the random term du is domain-specific. In addition, we have two explanatory
variables at our disposal: the variable 1x , which was used in the PPS sampling design, and

2x , which is an auxiliary variable uncorrelated to 1x . Note that both variables correlate quite
strongly with the response variable y. For 1x and 2x , slope parameters 1 and 2 are com-
mon fixed effects for all domains.

For GREG, we incorporate the sampling weights in the estimation procedure of model pa-
rameters, including the mixed model underlying the MGREG-SC estimator. This facilitates
the condition of “internal bias calibration” (a proper combination of model formulation and 
estimation procedure under a given sampling design) proposed by Firth and Bennett (1998).

Table 3 also shows our model building strategy. We start with simple models A1 and A2 and
proceed step by step towards the population generating model D2. In all models considered,
GREG family estimators are essentially unbiased, and a fixed-effects model formulation and
a mixed model formulation yield similar accuracy. An explanation for this observation is that
in the setting of this exercise, the average levels of the response variable did not vary much
over the domains. Best accuracy (excluding the true model) is for models where the PPS size
variable 1x is included. This demonstrates the accuracy gains attainedfrom the “double-use” 
of 1x both in the sampling design and in the estimation design; see also Särndal (1996). We
also note that accuracy differences between the different GREG estimators are substantial
especially in minor and medium domains, and accuracy improves with increasing the domain
sample size.



Table 3. Average absolute relative bias ARB (%) and average relative root mean squared
error RRMSE (%) of model-assisted GREG estimators of domain totals for minor, medium-
sized and major domains of the generated population.

Average ARB (%) Average RRMSE (%)
Domain size class Domain size classModel and

estimator Minor
(20-69)

Medium
(70-119)

Major
(120+)

Minor
(20-69)

Medium
(70-119)

Major
(120+)

Model A1 0k d ky   
GREG-SC 1.4 0.5 0.3 13.7 8.1 5.7

Model A2 0k d ky u   
MGREG-SC 0.2 0.2 0.1 13.7 8.1 5.6

Model B1 0 1 1k d k ky x    
GREG-SC 0.2 0.1 0.0 7.8 4.6 3.2

Model B2 0 1 1k d k ky u x     
MGREG-SC 0.2 0.1 0.0 7.8 4.6 3.3

Model C1 0 2 2k d k ky x    
GREG-SC 1.4 0.5 0.3 11.6 6.8 4.8

Model C2 0 2 2k d k ky u x     
MGREG-SC 0.2 0.1 0.1 11.6 6.8 4.7

Model D1 0 1 1 2 2k d k k ky x x      
GREG-SC 0.0 0.0 0.0 1.7 1.0 0.7

Model D2 0 1 1 2 2k d k k ky u x x        (Population generating model)
MGREG-SC 0.0 0.0 0.0 1.7 1.0 0.7
Variables

1x Size variable in PPS sampling, 2x Auxiliary variable

3.2 EBLUP estimators

For estimators of the EBLUP family, we asked “How to account for the underlying unequal 
probability sampling design?”. We proposed two options for this purpose: (a) the incorpora-
tion of sampling weights in the estimation of model parameters, and (b) the inclusion of sam-
pling design variables as additional covariates in the model.

We compare unweighted and weighted EBLUP estimators constructed with four mixed
model formulations. Model A includes a random intercept, variable 1x is included in Model
B, variable 2x is included in Model C and both variables appear in the population generating
model D. Similarly as for GREG, domain differences are accounted for by random intercept
terms, and slope parameters are common for all domains. For all models (except D), EBLUP
estimators are calculated with unweighted and weighted estimation of model parameters.

For Models A and C, unweighted estimators EBLUP-SC are seriously biased. For these mod-
els, the PPS sampling design is not accounted for. The bias declines considerably when the
sampling weights are incorporated in the estimation of the mixed model, as shown by the new
EBLUPW-SC estimators for Models A and C. The unweighted estimator EBLUP-SC under
Model B shows best bias behaviour, indicating that the inclusion of the PPS size variable in
the model can offer a powerful tool for bias reduction for EBLUP family estimators. Use of
both weighting and the inclusion of 1x in the model appears to be less powerful.

Accuracy behaviour of all EBLUP estimators is infected by the dominance of the squared
bias component in the MSE, as indicated by the RRMSE figures. This holds for all three do-



main size classes. Because of large bias and small variance, invalid confidence intervals can
be obtained. This means that point estimates can be systematically far away from the true
value, independently of the domain sample size. In addition, accuracy does not improve much
with increasing the domain sample size.

Table 4. Average absolute relative bias ARB (%) and average relative root mean squared
error RRMSE (%) of model-dependent EBLUP estimators of domain totals for minor, me-
dium-sized and major domains of the generated population.

Average ARB (%) Average RRMSE (%)
Domain size class Domain size classModel and

estimator Minor
(20-69)

Medium
(70-119)

Major
(120+)

Minor
(20-69)

Medium
(70-119)

Major
(120+)

Model A 0k d ky u   
EBLUP-SC 22.9 23.1 21.7 22.9 23.3 21.8
EBLUPW-SC 3.7 3.5 3.3 3.9 3.6 3.5

Model B 0 1 1k d k ky u x     
EBLUP-SC 1.8 1.4 0.7 2.8 2.5 2.2
EBLUPW-SC 3.5 3.5 3.3 3.5 3.6 3.3

Model C 0 2 2k d k ky u x     
EBLUP-SC 22.3 23.1 21.8 22.4 23.2 21.9
EBLUPW-SC 3.7 3.6 3.2 3.9 3.7 3.3

Model D 0 1 1 2 2k d k k ky u x x        (Population generating model)
EBLUP-SC 0.3 0.1 0.0 1.3 0.8 0.6
Variables

1x Size variable in PPS sampling, 2x Auxiliary variable

4 Conclusions

Results indicate that under unequal probability sampling, model-assisted GREG family esti-
mators are quite insensitive to the model choice, a property also shown in our previous re-
search to hold under SRSWOR. Model formulation and the estimation strategy of the model
are critical for model-dependent EBLUP family estimators. This is especially true when using
EBLUP for unequal sampling designs.

Bias of GREG estimators remained negligible for all model choices. “Double-use”of the
same auxiliary information, that is, the use of the size variable in the PPS sampling design
and in the assisting model, appeared to be beneficial with respect to accuracy. The accuracy
improved with increasing the domain sample size. In this case, the mixed model formulation
did not outperform the fixed-effects model formulation.

For model-dependent EBLUP family estimators, the bias can be large for a misspecified
model. The PPS sampling design could be accounted for with two options, by the inclusion of
the PPS size variable in the mixed model, or by the use of the weighted version of the
EBLUP estimator, where the sampling weights are incorporated in the estimation procedure
of model parameters. Of these two options, the first one appeared to be more effective, pro-
ducing an EBLUP estimator with small bias and good accuracy. However, for both options,
the squared bias component can still dominate the MSE, even in minor domains, tending to
invalidate the construction of proper confidence intervals. Dominance of the bias component
also can cause that the accuracy does not show improvement, when increasing the domain
sample size.
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