
Optimal inclusion probabilities and estimators
when sampling with varying probabilities

by
Daniel Thorburn,

Department of Statistics
Stockholm University
Ventspils August 2006

We discuss optimal allocation of inclusion probabilities in the presence of
auxiliary information. In most situations one should use itboth when deciding
the inclusion probabilities and in the estimator. The Horvitz-Thompson-( HT)-
estimator is seldom optimal. We will only look at large sample theory and use
a modelassisted designbased approach. The observations yi; i 2 U are iid rv.

E(Yijxi) = �(xi); Var(Yijxi) = �2(xi)

where � is a nice function and xi is the auxiliary information (perhaps multidi-
mensional). In this talk we will assume that x is one-dimensional but generali-
sations to the multidimensional situation is straight-forward. If the population
looks as follows (but with more data-points)�(xi) and �(xi) may look as follows

We assume that � varies slowly so that it can be estimated fairly well from the
sample (e.g. with a moving average other kernel estimators or spline functions).
Its estimator is denoted by ��(�). A natural estimator of the total is thenX
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The �rst part is a model-based estimator and the last part is an estimator of
the design-bias. We call this estimator a generalised di¤erence estimator. It is
approximately unbiased for large samples and its variance can be estimated by
the ordinary Sen-Yates-Grundy estimatorX
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From the assumed independence the expected variance under the model this is
approximately X
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Minimising this expression under a cost constraint gives that the inclusion prob-
abilities (at least for large n and N) should be chosen

�i /
�(xi)
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if the marginal costs are ci. Those who have seen Neyman allocation recognises
this expression.
We have not assumed anything about the procedure selecting the sample,

i.e. the second order inclusion probabilities are unimportant, but �(�) must be
estimated consistently and the above estimator used. With a more rigid model
like polynomial regression with a bounded degree, a dependence may appear and
the second order inclusion probabilities become important. In the next picture
it is illustrated by a straight line regression and a curved mean value function.
The residuals for two close x-values will mostly have the same sign. In that
case one ought to choose a �ps-design which spreads the observations so that
�i;j < �i ��j if xi and xj are close. A similar e¤ect occurs when stratifying with
a limited number of strata or using splines with a bounded number of nodes.
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With the above asymptotically optimal estimator the �ps-method did not
matter. The second order inclusion probabilities disappeared in the approximate
variance. Then you can choose any sampe design like: systematic �ps; Pareto-
�ps or Poisson-sampling. But if you intend to use a non-optimal method, like
the ordinary HT-estimator, the design matters. Most commonly used �ps-
methods try to get a high independence i.e. they tries to mimic SRS, when
�(�); is constant. In most cases this is a silly choice. It is e.g known that
variants of systematic sampling and strati�ed sampling are better even when
the inclusion probabilities are constant if the mean value function varies slowly.
This holds here too. Systematic �ps, ordering the observations after �(x) or x
or other sensible background variables is better. If you intend to use the HT-
estimator and wants an asymptotically small variance you should avoid methods
like Sampford, Pareto-�ps or Poisson-sampling.
Systematic �ps has, as we said, the advantage that you get a good and rep-

resentative sample. But it has the disadvantage that the variance cannot be
estimated exactly. But this is not a really a valid counterargument. Because
everything you can estimate with e.g. SRS or Sampford, you can still estimate
with a never larger variance. Thus you can give an upper bound on the variance-
which is the variance with with Pareto-�ps, say. There also exist list-sequential
methods which have the same asymptotically optimal behaviour as systematic
sampling and where the variance is possible to estimate. Another way to obtain
fairly good sampling schemes is to use strati�ed sampling with decreasing strata
widths.
If one uses a �silly�estimator like the HT-estimator or the regression esti-

mator, the above inclusion probabilities are not optimal. Instead one must add
a residual term to the variance getting
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where E(��(xi)) e.g. is 0 for the HT-estimator and the best regression line
E(a� + b�xi) for the regression estimator. If the variance function �2(xi) is
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small compared to the size, �(xi), this formula says that for the HT-estimator,
inclusion probabilities proportional to size are optimal. This is a well-known
fact, which often is used to motivate �ps:
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