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Abstract

We consider sampling designs, where inclusion (to sample) probabilities are mix-
tures of two components. The first component is proportional to the size of a popu-
lation unit (described by means of an auxiliary information available). The second
component is the same for every unit. We look for mixtures that minimize variances
of various estimators of the population total and show how auxiliary information
could help to find an approximate location of such mixtures.

We report theoretical and simulation results in the case of Poisson samples drawn
from populations which are generated by a linear regression model.

1 Introduction

Consider the population U = {u1, . . . , uN} and assume that we want to estimate the
population parameter ty =

∑
1≤i≤N yi, where yi = y(ui) denotes a measurement of

the population unit ui. For this purpose we draw a sample s from U . Assume that an
auxiliary information is available in the form of the vector x = (x1, . . . , xN ) with positive
coordinates. We call xi the size of the unit ui. In the case where the variables y and x
are highly correlated it is convenient to take into account the relative weights

pi = xi/tx, tx =
N∑

i=1

xi, (1)

when choosing the sampling design. For instance, one can define inclusion (to sample s)
probabilities πi = P (ui ∈ s) proportional to pi,

πi ≈ cpi, 1 ≤ i ≤ N. (2)

Kröger, Särndal and Teikari (2003) give examples of skewed populations and sampling
designs with inclusion probabilities close to (2) where the variances of several popular
estimators t̂y of the population total ty are considerably larger then the variances of the
same estimators, but with inclusion probabilities πi ≈ cpi(h), where

pi(h) = (1− h)pi + h/N, 1 ≤ i ≤ N. (3)

Here h ∈ [0, 1]. They consider Horvitz-Thompson, regression and generalized regres-
sion (GREG) estimators and sampling designs, where sampling is without replacement
and with a fixed sample size. The simulation study shows that the variances of these
particular examples are minimized for h ∈ (0.2; 0.5).
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Let us call the value h∗ of the parameter h optimal if it minimizes the variance.
Generally, it is impossible to find h∗ without complete knowledge of the population.
Much easier question is whether h∗ > 0 (i.e., whether inclusion probabilities with the
uniform component are preferable) for various sampling designs, various populations and
estimators t̂y. Another interesting question is how to make a decision about the location
of the minimizer h∗, based on the auxiliary information available.

An attempt to answer these questions in some simple situations is made in the present
article. Let us outline our approach. Assume that the population point scatter {(yi, xi) :
1 ≤ i ≤ N} looks as if it had been generated according to a probabilistic model, where
y1, . . . , yN are assumed to be realized values of independent random variables Y1, . . . , YN .
Given an estimator t̂y based on the sample s with the inclusion probabilities πi ≈ cpi(h),
let D∗

h = D∗
h(t̂y) denote the conditional variance of t̂y given Y1 = y1, . . . , YN = yN .

Furthermore, let Dh denote the expected value of this variance, i.e., Dh = ED∗
h. Assume,

for the moment, that in the interval 0 ≤ h ≤ 1 the function h → Dh has the unique
minimizer

h0 = argmin(Dh). (4)

Then one may expect that, by the law of large numbers, for large N , the number h0 is
close to the minimizer of the function h → D∗

h(t̂y). Therefore, h0 can be considered as
an approximation to the unknown random variable h∗. In order to access the quality of
the approximation one would like to evaluate the mean square error E(h∗ − h0)2 and to
compare (expected) values of the target function: D∗

h∗ , D∗
h0

, D∗
0 and D∗

1.
In this article we study the simplest case of the Poisson sample drawn from a pop-

ulation which is generated by a linear regression model (see Särndal, Swensson and
Wretman (1992), 226 p.). We have chosen the Poisson sample as a modelling example
since here (unique) solutions to the corresponding minimization problems are available
and the analysis is relatively simple and lucid.
The article is organized as follows. In Section 2 we introduce the population model
and derive the inequality h0 > 0 for two commonly used estimators: Horvitz-Thompson
and regression estimator. The approximation h0 to the random variable h∗ can be find
numerically, but we also propose explicit approximations to h∗. Examples of a simulation
study are reported in Section 3. They demonstrate the empirical evidence of the accuracy
of the approximation h∗ ≈ h0.

2 Results

1. Population. We shall assume that y1, . . . yN are realized values of independent
random variables Y1, . . . , YN such that for every k,

E(Yk) = β1 + β2xk, V(Yk) = σ2
k. (5)

Here σ1, . . . σN and x1, . . . , xN are non-random numbers and xk > 0 for every k. We
assume in what follows that β2 6= 0. Later we will assume that σ2

k = σ2xγ
k , 1 ≤ k ≤ N ,

γ ∈ [0, 2].
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2. Poisson sample includes the unit uk in the sample s with probability πk so that the
inclusion events for different units are independent. In particular, the random variables
Ik := I{uk∈s} are independent. Given n < N and h ∈ [0, 1] we choose probabilities

πk = πk(h) = npk(h), 1 ≤ k ≤ N. (6)

Then the expected sample size

E(I1 + · · ·+ IN ) = π1(h) + · · ·+ πN (h) = n.

For simplicity of notation we shall assume in what follows that

πk(0) < 1, for every k = 1, . . . , N. (7)

Then πk(h) < 1 for every h ∈ [0, 1] and k = 1, . . . , N .
We shall show that in the case of the Poisson sample the functions h → D∗

h and h → Dh

are convex for Horvitz-Thompson and regression estimator. Therefore, the numbers
h0 = argminDh and h∗ = argminD∗

h are well defined.

3. Horvitz-Thompson estimator (HT estimator for short)

t̂yHT =
N∑

i=1

Iiyiπ
−1
i

is unbiased and its variance

D∗
h =

N∑

i=1

y2
i (1− πi)π−1

i . (8)

Proposition 1. The functions h → Dh and h → D∗
h are convex. These functions are

constants whenever pi = N−1 for every i = 1, . . . , N .

The next Proposition 2 shows that very often we have h0 > 0. Therefore, the inclusion
probabilities (6) with equal probability sampling component of size h0 > 0 lead to a
lower variance of HT estimator than the traditional choice of inclusion probabilities (2).

Proposition 2. Assume that σ2
i = σ2xγ

i , γ ∈ [0, 2]. Assume that at least two of
probabilities {pi} are distinct.
(i) Assume that γ ∈ [0, 2). If β1β2 > 0 then 0 < h0 < 1. If β1 = 0, β2 6= 0 then we have
0 < h0 < 1 for σ2 > 0 and h0 = 0 for σ2 = 0.
(ii) Assume that γ = 2. If β1β2 > 0 then 0 < h0 < 1. If β1 = 0, β2 6= 0 then h0 = 0.

In our presentation at the conference we shall refer results of a simulation study where
the values of variances D∗

h are compared for h = h∗, h = h0, h = 0 and h = 1.

4. Regression estimator. It is convenient to treat the cases β1 = 0 and β1 6= 0
separately.
4.1. Assume that β1 = 0. In this case the regression estimator can be written in the
form (see Särndal, Svensson, Wretman (1992))

t̂yr = t̂yHT + B̂(tx − t̂xHT ),
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where

t̂xHT =
N∑

k=1

Ikxkπ
−1
k , B̂ =

( N∑

k=1

Ik
x2

k

σ2
kπk

)−1
N∑

k=1

Ik
xkyk

σ2
kπk

.

The variance formula is rather complex and, therefore, it is convenient to deal with the
approximate variance (see ibidem),

D∗
h =

N∑

k=1

(yk −Bxk)2(1− πk)π−1
k , where B = D−1

N∑

k=1

xkyk

σ2
k

and D =
∑N

k=1 σ−2
k x2

k. A simple calculation shows that the expected value Dh = ED∗
h

can be written in the form

Dh =
N∑

k=1

( 1
n

1
pk(h)

− 1
)
(σ2

k −D−1x2
k). (9)

The same argument as above shows that the functions h → D∗
h and h → Dh are convex.

4.2. Assume that β1 6= 0. In this case the population size N can be considered as
an auxiliary information and we have the regression estimator (see Särndal, Svensson,
Wretman (1992))

t̂yr = t̂yHT + B̂1(N − t̂1HT ) + B̂2(tx − t̂xHT ).

Here t̂1HT =
∑N

i=1 Iiπ
−1
i . The coefficients

(
B̂1

B̂2

)
=

( N∑

i=1

IiXiX
′
i/σ2

i πi

)−1
N∑

i=1

IiXiyi/σ2
i πi,

where Xi =
(

1
xi

)
. The variance formula of this estimator is rather complex and we shall

consider the approximate variance instead (see ibidem)

D∗
h =

N∑

k=1

(π−1
k − 1)(yk −B1 − xkB2)2, (10)

where (
B1

B2

)
=

( N∑

i=1

XiX
′
i/σ2

i

)−1
N∑

i=1

Xiyi/σ2
i .

It is convenient to write the function Dh = ED∗
h in the form

Dh =
N∑

k=1

( 1
n

1
pk(h)

− 1
)(

σ2
k −

1
W

(D − 2Gxk + Hx2
k)

)
, (11)

where we denote

D =
N∑

k=1

x2
k

σ2
k

, G =
N∑

k=1

xk

σ2
k

, H =
N∑

k=1

1
σ2

k

, W = DH −G2.
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The same argument as above shows that functions h → D∗
h and h → Dh are convex.

In both cases expressions of the functions (9) and (11) are complicated for further the-
oretical analysis (the minimization problem of the functions (9) and (11) can be easily
solved numerically), so we shall consider the approximation (see Särndal, Svensson,
Wretman (1992))

Dh '
N∑

k=1

( 1
n

1
pk(h)

− 1
)
σ2

k. (12)

This approximation is convex function too.

Proposition 3. Assume that σ2
i = σ2xγ

i , γ ∈ [0, 2]. Assume that at least two of
probabilities {pi} are distinct. Assume that the functions (9) and (11) are changed by
approximation (12). Let σ2 > 0.
(i) Assume that γ = 0. Then h0 = 1.
(ii) Assume that γ ∈ (0, 2). Then 0 < h0 < 1.
(iii) Assume that γ = 2. Then h0 = 0.

5. Explicit approximations to h∗. Assume that σ2
k = σ2xγ

k , 1 ≤ k ≤ N , γ ∈ [0, 2].
For HT estimator (after some analytical and statistical assumptions) we have

h∗ ≈ hHT =
β1 + cv(y)

2 (1− γ
2 )σ

β1 + β2µx + cv(y)
2 µσ

, (13)

where µx = tx/N , µσ = 1
N

∑N
i=1 σi and cv(y) is the coefficient of variation of y in the

population U .
For regression estimator can be similarly derived

h∗ ≈ hR =
(1− γ

2 )σ
µσ

. (14)

3 Simulation examples

We fix population size N = 1000, expected sample size n = 100. Consider auxiliary
information vector x̃E with coordinates

xi =
∣∣∣ log(1− i− 0.5

N
)
∣∣∣, 1 ≤ i ≤ N.

Note that this auxiliary information vector satisfy the condition (7).
Given an auxiliary information vector x̃E consider the population models yi = 2 + xi +
σiηi, where σ2

i = σ2xγ
i , γ ∈ {0; 0.5; 1; 1.5; 2}, 1 ≤ i ≤ N . Here η1, η2, . . . denotes the

sequence of independent standard normal random variables. For every γ we choose the
value of σ so that the expectation of the coefficient of correlation between x̃E and y is
near 0.9.
The first table report the simulation study of the HT estimator variance (8) and the sec-
ond table report the simulation study of the regression estimator variance (10). Columns
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Table 1 HT estimator

γ h0
Dh0
D0

Dh0
D1

E1 E2 E3 E4

0.0 0.675 0.2106 0.8940 0.2112 0.8937 0.9999 0.9999
0.5 0.668 0.2178 0.8905 0.2176 0.8895 0.9999 0.9999
1.0 0.663 0.2185 0.8877 0.2189 0.8889 0.9999 0.9999
1.5 0.660 0.2183 0.8856 0.2182 0.8865 0.9999 0.9999
2.0 0.658 0.2182 0.8836 0.2184 0.8836 0.9999 0.9999

E(h∗ − h0)
2 cv(y) hHT V1 V2 V3 V4

0.0 3.37E-05 0.372 0.676 4.29E-04 8.33E-06 1.42E-09 1.60E-09
0.5 2.93E-05 0.361 0.671 2.73E-05 1.31E-05 1.27E-09 2.75E-09
1.0 3.07E-05 0.363 0.664 3.49E-06 2.02E-05 1.19E-09 1.10E-09
1.5 4.96E-05 0.356 0.658 2.91E-06 3.03E-05 3.56E-09 4.63E-09
2.0 6.22E-05 0.390 0.652 2.70E-06 4.76E-05 8.00E-09 1.61E-08

Table 2 Regression estimator

γ h0
Dh0
D0

Dh0
D1

E1 E2 E3 E4

0.0 1.000 0.1099 1.0000 0.1227 1.0000 0.9998 0.9998
0.5 0.716 0.4496 0.9362 0.4460 0.9345 0.9994 0.9903
1.0 0.419 0.7831 0.7832 0.7814 0.7857 0.9995 0.9866
1.5 0.161 0.9587 0.6045 0.9582 0.6048 0.9994 0.9895
2.0 0.000 1.0000 0.4458 1.0000 0.4434 0.9999 0.9999

E(h∗ − h0)
2 cv(y) hR V1 V2 V3 V4

0.0 1.98E-04 0.372 1.000 1.18E-03 4.09E-31 2.21E-07 2.21E-07
0.5 8.33E-04 0.361 0.827 1.06E-03 2.05E-04 3.96E-07 2.36E-05
1.0 8.33E-04 0.363 0.564 4.47E-04 4.86E-04 5.44E-07 2.73E-05
1.5 6.41E-04 0.356 0.272 8.58E-05 1.01E-03 6.45E-07 2.47E-05
2.0 1.65E-05 0.390 0.000 2.09E-31 6.04E-04 2.65E-08 2.65E-08

E1-E4 shows the means of the ratios
D∗h0
D∗0

,
D∗h0
D∗1

, D∗
h∗

D∗h0

, D∗
h∗

D∗hHT

(or D∗
h∗

D∗hR

for regression esti-

mator) respectively and V1-V4 - their variances. Expected values given in the columns
E1-E4, V1-V4 and the mean square error E(h∗ − h0)2 are evaluated using a tiny Monte
Carlo study. We generate 50 independent copies of a given population and evaluate
empirical mean values of the parameters of interest. Quantity cv(y) is evaluated using
first copy of a given population.
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