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Abstract

Methods for conditional Poisson sampling (CP-sampling) are compared and the focus is
on the efficiency of the methods. The time it takes to generate samples is investigated by
simulation in the R-programming language. A new method introduced by Bondesson,
Traat & Lundqvist in 2004 is found to be efficient. The new method is an acceptance
rejection method that uses the efficient Pareto sampling method.

1 Introduction

Both conditional Poisson sampling (CP-sampling) and Sampford sampling are
fixed size πps sampling designs. Thus, the methods can be used to get a sample
of fixed size n from a population of size N with unequal inclusion probabilities.
In 2004, Bondesson, Traat & Lundqvist introduced new methods for both CP-
sampling and Sampford sampling. The new methods use Pareto sampling, which
was introduced by Rosén (1997a,b). The methods are acceptance rejection (A-R)
methods and they use the fact that the Pareto sampling design is very close to
the design of both CP-sampling and Sampford sampling. A Pareto sample, which
is rapidly generated, can be adjusted to become a true CP-sample or a Sampford
sample by the use of an A-R filter.

In Grafström (2005), methods for both CP-sampling and Sampford sampling were
compared. The methods were compared by simulation in the Matlab program-
ming language and the new methods were found to be efficient. The focus in this
text is on the methods for CP-sampling and we present some simulation results
using the R-programming language. It is more appealing to use R since it is a
free software which is specialised on statistical computing and it is widely used.
Four methods for CP-sampling are compared and we wonder which method is
the most efficient one.

CP-sampling is a modification of Poisson sampling. Let pi be the given target
inclusion probability for unit i, i = 1, ..., N . Each unit i in the population is
included with probability pi but only samples of size n are accepted. Usually it
is assumed that

∑N
i=1 pi = n since it will maximize the probability to get samples
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of size n. The assumption
∑N

i=1 pi = n is not restrictive. If it is not satisfied, the
pis can be transformed to satisfy that condition (Hajek, 1981, p. 66, Broström
and Nilsson, 2000). When using CP-sampling, the true inclusion probabilities
will only be approximately pi. However, there is a possibility to adjust the pis to
obtain desired inclusion probabilities (Dupacova, 1979, Chen et al., 1994, Aires,
2000, Tillé, 2005).

In section 2 there is a description of each of the sampling methods. Then in section
3, the methods are tested by simulation in some different sampling situations. The
conclusions are presented in section 4.

2 The methods

The different sampling methods are described in this section.

2.1 CP-reject

The CP-reject method for CP-sampling can be found in Hajek (1981). Let the
target inclusion probability for unit i be pi with

∑N
i=1 pi = n. Also, let Ii be

independent and Bin(1, pi) distributed inclusion variables. Then unit i is included
in the sample if Ii = 1. Simulate Ii for i = 1, ..., N and accept the sample as a
CP-sample if

∑N
i=1 Ii = n. Repeat the procedure until a sample is accepted.

2.2 CP-with replacement

CP-with replacement (Hajek, 1981) is another method for CP-sampling. Let the
target inclusion probability for unit i be pi with

∑N
i=1 pi = n. Draw n units

with replacement where unit i is drawn with probability p′i ∝ pi/(1 − pi) and∑N
i=1 p′i = 1. If all n units are distinct, the sample is accepted as a CP-sample.

Otherwise the procedure is repeated from the beginning.

2.3 CP-list sequential

The CP-list sequential method uses the definition of conditional probability and
it was found to be efficient by Öhlund (1999). The method can also be found
in Chen & Liu (1997), Traat et al. (2004) and in Tillé (2005). Let the target
inclusion probability for unit i be pi and

∑N
i=1 pi = n. Also, let Ii be independent
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Bin(1, pi) distributed random inclusion variables. Then the inclusion variables Ii

can be successively generated from the conditional distributions

P

Ii = x

∣∣∣∣∣∣
N∑

j=i

Ij = n− ni−1

 , x = 0, 1,

where ni−1 =
∑i−1

j=0 Ij and I0 = 0. We will always get a sample of size n. The
conditional probabilities can be written as

P

Ii = 1

∣∣∣∣∣∣
N∑

j=i

Ij = n− ni−1

 =
P (Ii = 1) P

(∑N
j=i+1 Ij = n− ni−1 − 1

)
P

(∑N
j=i Ij = n− ni−1

) .

To use this formula, one first has to calculate the probabilities P
(∑N

j=i Ij = k
)

for all i and k. That can be done recursively. Fortunately these probabilities
need only to be calculated once. Then they can be used to generate as many
samples as desired. The calculation may still be too time-consuming if N and n
are large. Then it is possible to calculate only some of the probabilities exactly
and use normal approximations for the rest of them.

2.4 Pareto sampling

Pareto sampling (Rosén, 1997a,b) is used to select a sample of fixed size n from
a population of size N . Let λi be the given target inclusion probability for unit
i and

∑N
i=1 λi = n. The method works as follows.

Generate U1, U2, ..., UN , where the Uis are independent U(0, 1) variables. Then
calculate the Pareto ranking variables

Qi =
Ui/(1− Ui)

λi/(1− λi)

for each unit. Select the n units with the smallest Q-values as a Pareto sample
of fixed size n. The true inclusion probabilities will be approximately λi.

2.5 CP-sampling via Pareto sampling

CP-sampling via Pareto sampling is the new method that was introduced by
Bondesson, Traat & Lundqvist (2004). Let the target inclusion probability for
unit i be pi and

∑N
i=1 pi = n. First a Pareto sample is generated with λi =

pi, i = 1, ..., N . Then the Pareto sample is either rejected or accepted as a
CP-sample using the probability functions for the Pareto and CP designs. Let
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I = (I1, I2, ...IN) be the vector of random inclusion variables, i.e. Ii ∈ {0, 1} and
if Ii = 1 then unit i is sampled. Also, let |I| =

∑N
i=1 Ii = n be the sample size.

The probability functions p(x) = P (I = x) for the designs can then be written as

pCP (x) = CCP

∏
pxi

i (1− pi)
1−xi , |x| = n,

and, for λi = pi,

pPar(x) =
∏

pxi
i (1− pi)

1−xi ×
∑

ckxk, |x| = n,

where

ck =
∫ ∞

0
xn−1

∏ 1 + τi

1 + τix
· 1

1 + τkx
dx and τi =

pi

1− pi

.

The sums and products are taken over the integers 1, 2, ..., N . The constant
CCP is found from the normalizing condition

∑
x:|x|=n p(x) = 1. We also have

CCP ≈
√

2πd for large values of d =
∑

pi(1 − pi). The cks can be calculated
exactly or approximated by Laplace approximations. One approximation is

ck ≈ c∗k = (1− pk)
√

2πσk exp{σ2
kp

2
k/2}, where σ2

k =
1

d + pk(1− pk)
.

This approximation can be improved by the following calibration

c
∗(cal)
k =

(N − n)c∗k∑
i c

∗
i

c0, where c0 =
∫ ∞

0
xn−1

∏ 1 + τi

1 + τix
dx.

The constant c0 can be calculated exactly or approximated by c∗0 =
√

2π/d. See

Bondesson, Traat & Lundqvist (2004) for a full description of these approxima-
tions.

Now let us consider when we can accept a Pareto sample as a CP-sample. Let
p1(·) and p2(·) be two probability functions. If there exists a constant B such that
p1(x) ≤ Bp2(x) for all x, then a sample from p2(·) can be generated and accepted
as a sample from p1(·) if U ≤ p1(x)/(Bp2(x)), where U is a random number from
U(0, 1). The procedure is repeated from the beginning until a sample is accepted.

If p1(·) = pCP (·) without CCP and p2(·) = pPar(·), then the constant B must be
chosen so that 1 ≤ B

∑
ckxk for all x. If the probabilities pi, i = 1, ..., N, are

given in increasing order, then the cks will decrease. The best choice of B will be
B−1 =

∑N
k=m ck where m = N − n + 1.

The conditional acceptance rate for accepting a Pareto sample as a CP-sample is

CAR(x) =
1

B
∑

ckxk

.

Thus a generated Pareto sample with λi = pi will be accepted as a CP-sample if
U ≤ CAR(x), where U ∼ U(0, 1). See Bondesson, Traat & Lundqvist (2004) for
more details.
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3 Simulation and results

The sampling methods have been implemented in the R-programming language.
For CP-sampling via Pareto we have used the calibrated Laplace approximation
for calculation of the cks. In the CP-list sequential method all necessary proba-
bilities for sums are calculated exactly.

The methods are first tested on a relatively small population and then a larger
population is used, where the differences are more apparent.

Example 1. Sampling from the MU284 population. The population that consists
of the 284 municipalities of Sweden is called the MU284 population and can be
found in Särndal, Swensson & Wretman (1992, pp. 652-659). We use the variable
P85, which is the population size in a municipal in the year 1985. Sampling is
performed proportional to the size of the population (P85) in each municipal. We
generated 1000 samples of size 50 and the results can be found in Table 1. The
acceptance rate for CP-with replacement was too low for that method to be used
in this example.

Table 1: Results for the MU284 population. We generated 1000 samples of size
50. The times are in seconds and ÂRSim is the acceptance rate for this simulation.

Method n Prel. calc. Mean time Total time ÂRSim

CP-reject 50 0 0.00232 2.32 0.069
CP-list sequential 50 0.66 0.01182 12.82 1
CP via Pareto 50 0 0.00336 3.36 0.791

We see from Table 1 that CP-reject has the lowest mean time. The simplicity
of that method makes it efficient as long as the acceptance rate is not too low.
CP-sampling via Pareto is also quite efficient and the high acceptance rate (0.791)
implies that the probability functions for CP and Pareto are close. The CP-list
sequential method is not as efficient as the other methods.

Example 2. Sampling from a large population. Let N = 10000 be the population
size and n = 2000 be the sample size. Also let the target inclusion probabilities
be

p1 = 0.1, p2 = 0.15, p3 = 0.2, p4 = 0.25, p5 = 0.3,

where each p-value is used for 2000 units (thus we have
∑N

i=1 pi = n). The
acceptance rate for CP-with replacement was too low for that method to be used
in this example. We generated 100 samples of size 2000 from this population and
the results can be found in Table 2.
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Table 2: Results for the large population. We generated 100 samples of size 2000.
The times are in seconds and ÂRSim is the acceptance rate for this simulation.

Method Prel. calc. Mean time Total time ÂRSim

CP-reject 0 0.373 37.31 0.009
CP-list sequential 616 0.3422 650.22 1
CP via Pareto 0 0.0501 5.01 0.901

In Table 2, we see that CP via Pareto has the lowest mean time. We also see
that the acceptance rate (0.901) is even higher than in Example 1. If we look
at the acceptance rate for CP-reject, we see that it is much lower now than in
Example 1. The time for preliminary calculations in the list sequential method
has increased a lot. After the preliminary calculations have been performed, the
method is a little bit more efficient than CP-reject.

4 Conclusions

We found that the method CP-reject is efficient for sampling from a small popu-
lation, but the acceptance rate decreases when the population size increases. We
found that CP-with replacement is efficient only when n is much smaller than N .
The method becomes inefficient very fast when the sample size n increases. The
CP-list sequential method has preliminary calculations and the time for these
calculations increases rapidly when the sample size n and the population size N
increases. However, after the preliminary calculations have been performed the
method is quite efficient. CP-sampling via Pareto seems to be very efficient in all
situations. We have used Laplace approximation of the cks, but the approxima-
tion is very good and it makes this method faster than if the cks are calculated
exactly. It is also easy to implement. The time it takes to generate a sample with
this method is rather independent of the sample size n. The new method is the
most efficient one in general, but not always. If the population and the sample
size are not too big, then the list sequential method can be efficient and useful
(Öhlund, 1999). The list sequential method might even be the most efficient one
if many samples are to be generated, since the samples always are accepted.
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tal givet deras summa (Comparisons of different methods to generate Bernoulli distrib-
uted random numbers given their sum). Master’s thesis, Department of Mathematical
Statistics, University of Ume̊a, Sweden.

Rosén, B. (1997a). Asymptotic theory for order sampling. J. Statist. Plann. Inference
62, 135-158.

Rosén, B. (1997b). On sampling with probability proportional to size. J. Statist.
Plann. Inference 62, 159-191.

Särndal, C-E, Swensson, B. & Wretman, J. (1992). Model assisted survey sampling.
Springer-Verlag, New York.
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