

August 24-28, 2006

PART I

Estimation for domains and small areas: GREG and EBLUP methodology

Some key terminology

- Population subgroup = Domain
 NUTS regions, demographic
 - subgroups... Usually assumed non-
 - overlapping
- Small area
 - Domain whose sample size is small (even zero)
- Domain estimation
 - Estimation of statistics (totals, means, proportions...) for domains
- Small area estimation SAE
 - Estimation of statistics for small domains
 - SIE Small Island Estimation (Canary Islands)!

- Generalized regression GREG estimator
 - Model-assisted estimator
 - Assisting models
 - Fixed-effects model
 - Mixed model with fixed effects and random effects
 - Synthetic estimator SYN

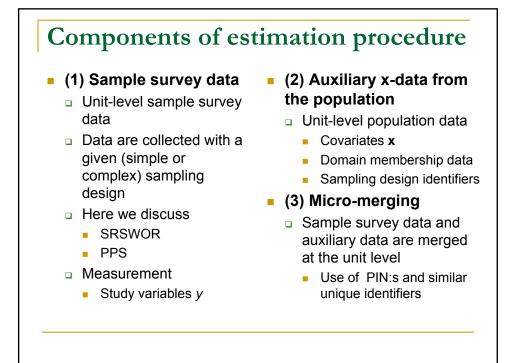
- Model-dependent estimator
- Underlying model
 Fixed-effects model
- Empirical best linear unbiased
 - predictor EBLUP Model-dependent estimator
 - Model-dependent e
 Underlying model
 - Mixed model with fixed effects and random effects

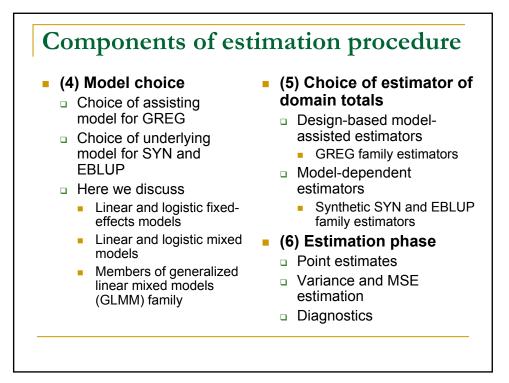
Background

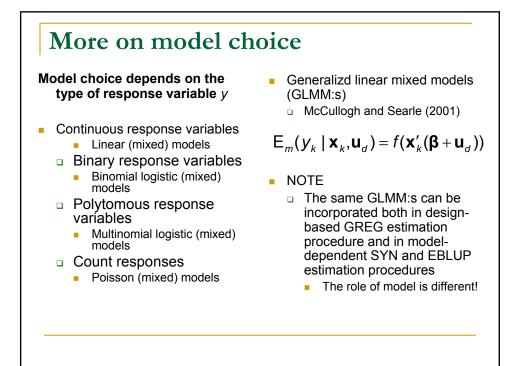
World-wide trend

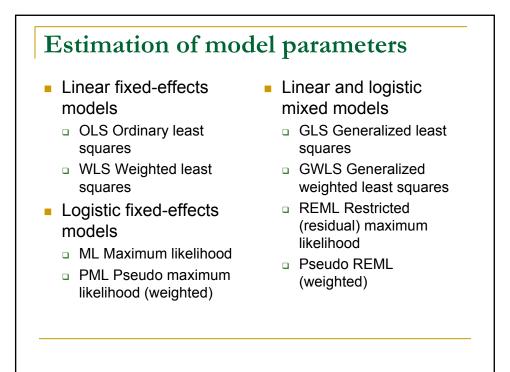
- Increasing need in society for official statistics for regional and other domains
 - Labour market, Economy, Demography, Welfare and health, Environment
- SAIPE Small Area Income & Poverty Estimates
 - U.S. Census Bureau
- EURAREA Project (2001-2004)
 - Adaptation of modeldependent SAE methods into the European context

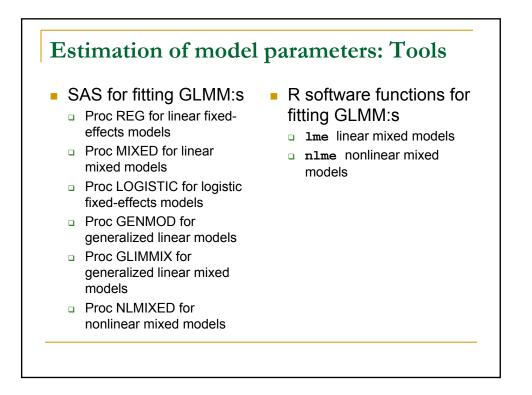
SAE in conferences

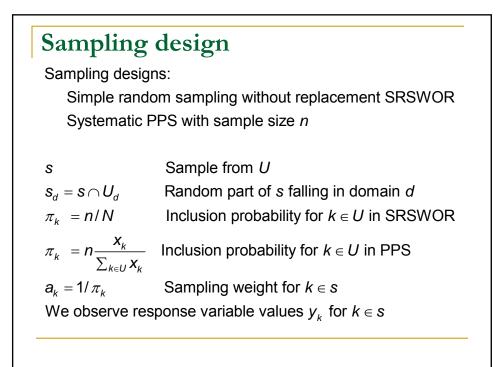

- Warsaw (1992)
- Riga (1999) ISI Satellite
- Berlin (2003) ISI Session
- Sydney (2005) ISI Session
- Jyväskylä (2005) SAE I
- Pisa (2007) SAE II
- Spain (2009) SAE III?
- Statistics in Transition Journal, SAE papers
 - December 2005March 2006
- Recent SAE books
 - Rao (2003)
 - Longford (2005)

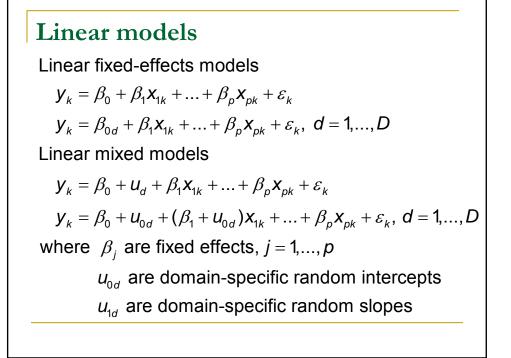

Approaches to be discussed

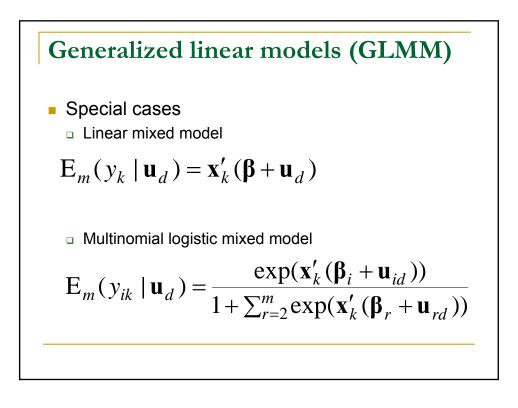

- Design-based modelassisted methods
 - Family of generalized regression GREG type estimators
 - Särndal, Swensson and Wretman (1992)
 - Särndal (1996)
 - Estevao and Särndal (1999, 2004)
 - Lehtonen and Veijanen (1998, 1999)
 - Lehtonen, Särndal and Veijanen (2003, 2005, 2006)

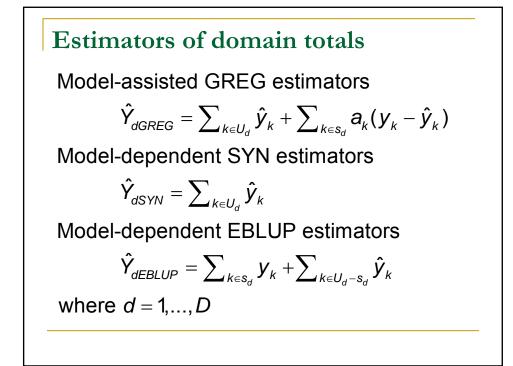

- Model-dependent methods
 - Family of Synthetic SYN type estimators
 - Family of Empirical Best Linear Unbiased Predictor EBLUP type estimators
 - Ghosh (2001)
 - Rao (2003)
 - Longford (2005)
- Parameters to be estimated
 Totals for domains


Two different domain structures Planned domain Unplanned domain structure structure Domains are defined as Domain structure is not a strata in the sampling part of the sampling design design Domains are treated as Domain sample sizes independent are random variables subpopulations (strata) Extra variation due to Domain sample sizes randomness must be taken into account in are fixed in the sampling variance estimation design Common situation in . Stratification for the practice domain structure is an efficient option!








Population frame and parameters

 $U = \{1, 2, ..., k, ..., N\} \text{ Population (fixed, finite)}$ $U_1, ..., U_d, ..., U_D \text{ Domains of interest (non-overlapping)}$ $Y_d = \sum_{U_d} y_k, d = 1, ..., D \text{ Target parameters (domain totals)}$ $\mathbf{x}_k = (x_{1k}, ..., x_{pk})' \text{ Auxiliary variable vector}$ $I_{dk} = 1 \text{ if } k \in U_d \text{ Domain membership indicators,}$ $I_{dk} = 0 \text{ otherwise } d = 1, ..., D$ NOTE: We assume that the vector value \mathbf{x}_k and domain membership are known for every population unit $k \in U$

Fitted values under linear fixed-effects models $\hat{y}_{k} = \hat{\beta}_{0} + \hat{\beta}_{1} \mathbf{x}_{1k} + \ldots + \hat{\beta}_{p} \mathbf{x}_{pk}$ $\hat{y}_{k} = \hat{\beta}_{0d} + \hat{\beta}_{1} \mathbf{x}_{1k} + \ldots + \hat{\beta}_{p} \mathbf{x}_{pk}, \quad d = 1, \ldots, D$ Fitted values under linear mixed models $\hat{y}_{k} = \hat{\beta}_{0} + \hat{\mu}_{0d} + \hat{\beta}_{1} \mathbf{x}_{1k} + \ldots + \hat{\beta}_{p} \mathbf{x}_{pk}$ $\hat{y}_{k} = \hat{\beta}_{0} + \hat{\mu}_{0d} + (\hat{\beta}_{1} + \hat{\mu}_{1d}) \mathbf{x}_{1k} + \ldots + \hat{\beta}_{p} \mathbf{x}_{pk}, \quad d = 1, \ldots, D$ NOTE: Fitted values are calculated for every $k \in U$

Fitted values under logistic models

For a binary y_k

Fitted values under logistic fixed-effects models $\hat{y}_{k} = \exp(\mathbf{x}'\hat{\mathbf{\beta}})/(1 + \exp(\mathbf{x}'\hat{\mathbf{\beta}}))$

Fitted values under logistic mixed models

$$\hat{y}_{k} = \exp(\mathbf{x}'(\hat{\mathbf{\beta}} + \hat{\mathbf{u}}_{d}))/(1 + \exp(\mathbf{x}'(\hat{\mathbf{\beta}} + \hat{\mathbf{u}}_{d})))$$

Variance estimation for GREG Planned domain structure under SRSWOR

$$\hat{V}_{srs}(\hat{Y}_{d}) = N_{d}^{2}(1 - \frac{n_{d}}{N_{d}})(\frac{1}{n_{d}})\sum_{k \in S_{d}} \frac{(\hat{e}_{k} - \overline{\hat{e}}_{d})^{2}}{n_{d} - 1}$$

where $\hat{e}_{k} = y_{k} - \hat{y}_{k}$ and $\overline{\hat{e}}_{d} = \sum_{k \in S_{d}} \hat{e}_{k} / n_{d}$ Unplanned domain structure under SRSWOR

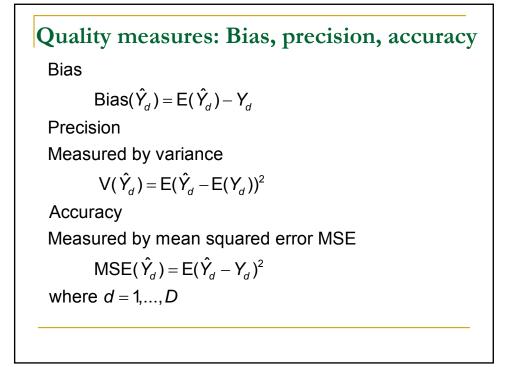
$$\hat{v}_{srs}(\hat{Y}_{d}) = N^{2}(1 - \frac{n}{N})(\frac{1}{n})p_{d}\hat{s}_{d\hat{e}}^{2}(1 + \frac{q_{d}}{c.v_{d\hat{e}}^{2}})$$

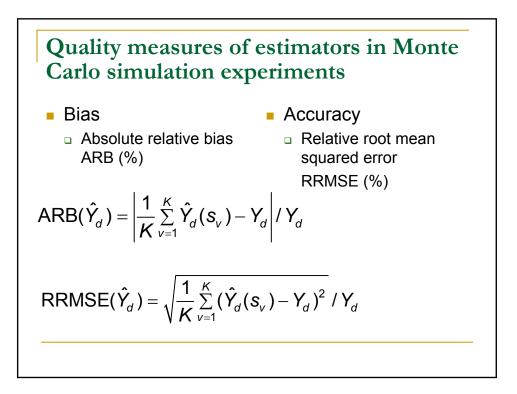
where $p_d = n_d / n$ and $q_d = 1 - p_d$

 $c.v_{d\hat{e}} = \hat{s}_{d\hat{e}} / \overline{\hat{e}}_{d}$ is sample coefficient of variation of residuals in domain *d* with $\hat{s}_{d\hat{e}}$ as the sample standard deviation

of residuals in domain d

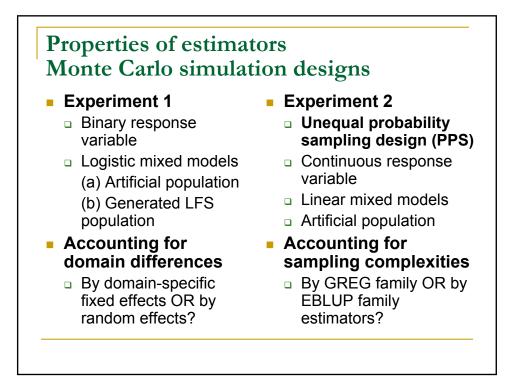
Estimation for domains and small areas: EURAREA tools

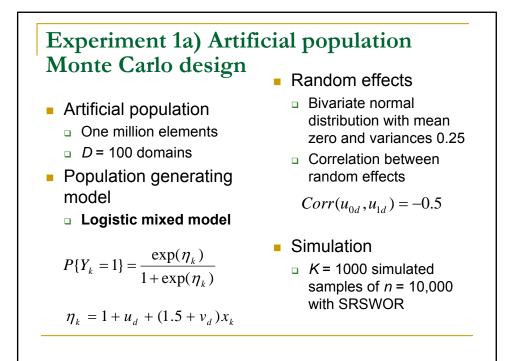

SAS/IML Macro EBLUPGREG


- GREG, SYN and EBLUP estimation of totals and means for domains and small areas using linear mixed models
- Freeware
- www.statistics.gov.uk/eurarea
- Developed by Statistics Finland and University of Jyväskylä

- Models
 - Linear mixed models with area-specific random intercepts
 - Modelling of spatial correlations
 - Exponential decay model
 - Modelling of temporal correlations
 - Fixed time effect

PART II

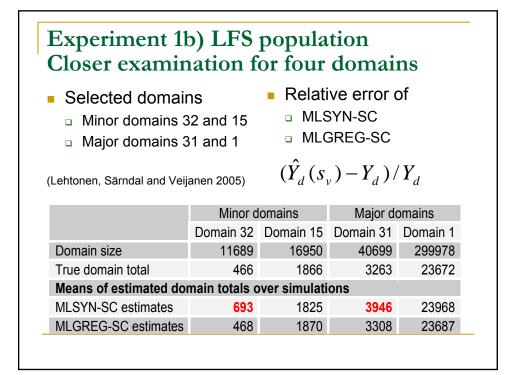

Results on properties (bias and accuracy) of GREG and EBLUP estimators of totals for domains

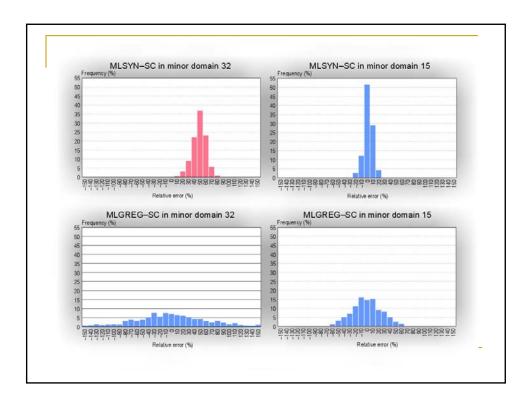


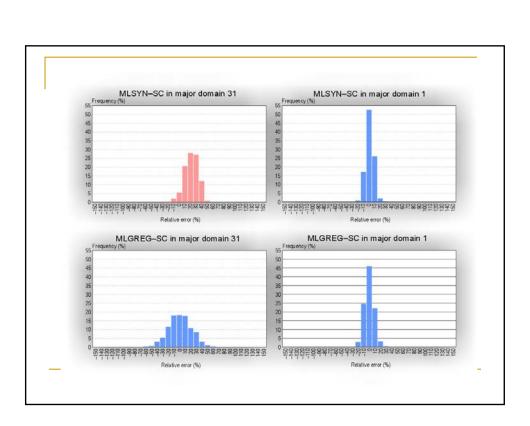
Known design-based properties of estimators for domain totals

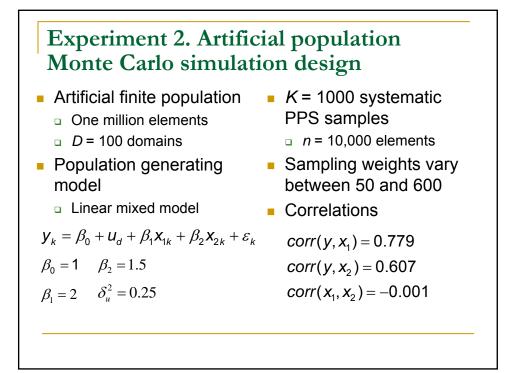
	Design-based model-assisted methods GREG family	Model-dependent methods EBLUP and SYN families
Bias	Unbiased (approximately) by the construction principle	Biased Bias does not necessarily approach zero with increasing sample size
Precision (Variance)	Variance may be large for small domains Variance tends to decrease with increasing domain sample size	Variance can be small even for small domains Variance tends to decrease with increasing domain sample size
Accuracy (Mean Squared Error, MSE)	MSE = Variance (or nearly so)	MSE = Variance + Squared Bias Accuracy can be poor if the bias is substantial
Confidence intervals	Valid intervals can be constructed	Valid intervals not necessarily obtained

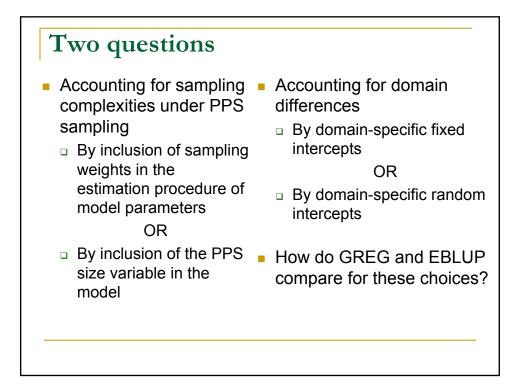
Logistic SYN and logistic GREG estimators for a binary or polytomous response variable by model choice and estimator type (Lehtonen, Särndal and Veijanen 2005)

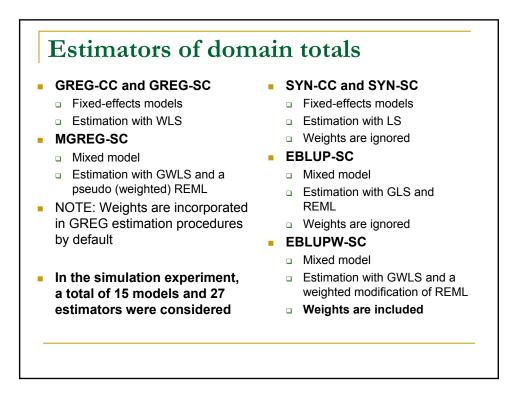

	Model choice	Estimator type		
Model abbreviation	Model specification	Effect type	Model-dependent synthetic	Model-assisted generalized regression
CC	Common intercepts Common slopes	Fixed effects	LSYN-CC	LGREG-CC
SC	Separate intercepts Common slopes	Fixed effects	LSYN-SC	LGREG-SC
		Fixed and random	MLSYN-SC	MLGREG-SC
SS	Separate intercepts Separate slopes	Fixed effects	LSYN-SS	LGREG-SS
		Fixed and random	MLSYN-SS	MLGREG-SS


	Average ARB (%)			Average RRMSE (%)			
Estimator	Domain size class			Domain size class			
	Minor (20-69)	Medium (70-119)	Major (120+)	Minor (20-69)	Medium (70-119)	Major (120+)	
SYN estimators							
LSYN-CC	45.5	36.0	29.5	45.7	36.1	29.7	
LSYN-SC	1.1	0.6	0.4	42.6	24.0	16.1	
MLSYN-SC	20.9	9.8	4.7	31.1	20.1	14.3	
LSYN-SS	1.1	0.5	0.4	43.8	24.2	16.1	
MLSYN-SS	20.7	9.6	4.6	31.3	20.2	14.4	
GREG estimate	ors						
LGREG-CC	0.1	0.6	0.4	43.6	24.3	16.3	
LGREG-SC	1.1	0.6	0.4	42.6	24.0	16.1	
MLGREG-SC	1.0	0.6	0.4	41.4	23.8	16.0	
LGREG-SS	1.1	0.5	0.4	43.8	24.2	16.1	
MLGREG-SS	1.1	0.5	0.4	41.4	23.8	16.0	


Average ARB (%) and average RRMSE (%) of logistic SYN and logistic GREG estimators of totals of a binary response variable for the artificial population (Lehtonen, Särndal and Veijanen 2005)


Experiment 1b) Generated LFS population: Monte Carlo design Domains of interest Binary response y \square D = 85 NUTS4 regions □ ILO unemployed (0/1) Auxiliary x-variables Logistic models from registers: Fixed effects: Gender, Age, Reg-UE (plus Sex, Age, Area (NUTS2) interactions) Unemployed jobseeker Domain-specific random indicator Reg-UE (0/1) intercepts (mixed model) Generated LFS 1000 independent population samples with SRSWOR \square N = 3 million units □ *n* = 12,000 units duplicated from the LFS data


of the generat Veijanen 2005)		populatio	m (Lenu	onen, sai	indar and			
,		rage ARB	(%)	Average RRMSE (%)				
	Dor	nain size cl	ass	Dor	nain size class			
Estimator	Minor	Medium	Major	Minor	Medium	Major		
	(20-69)	(70-119)	(120+)	(20-69)	(70-119)	(120+)		
SYN estimator	~							
LSYN-CC	32.3	20.0	13.5	32.5	20.3	13.9		
LSYN-SC	2.7	1.0	0.3	43.0	28.7	16.3		
MLSYN-SC	17.2	9.7	3.6	28.8	17.8	11.9		
GREG estimat	ors							
LGREG-CC	0.1	0.7	0.3	41.4	28.5	16.4		
LGREG-SC	2.7	1.0	0.3	43.0	28.7	16.3		
MLGREG-SC	0.8	0.7	0.3	40.6	28.1	16.2		



Estimators of domain totals

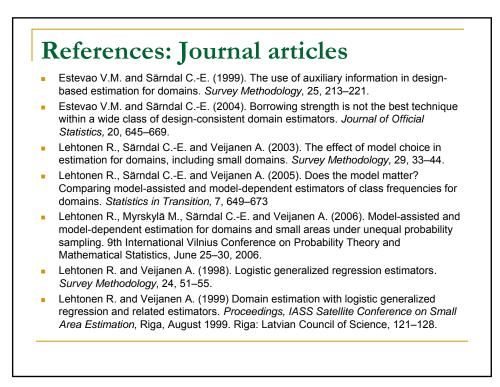
Schematic presentation of the model-dependent and model-assisted estimators of domain totals for a continuous response variable by model choice and estimator type.

Mode	el choice and es	Estimator type				
Model abbreviation	Model specification	Effect type	Use of weights in estimation of model parameters	Model- dependent estimators	Model- assisted estimators	
CC	Common intercepts Common slopes	Fixed effects	No	SYN-CC	Not applicable	
			Yes	Not applicable	GREG-CC	
SC	Separate	Fixed effects	No	SYN-SC	Not applicable	
	intercepts Common slopes		Yes	Not applicable	GREG-SC	
		Fixed and	No	EBLUP-SC	Not applicable	
		random	Yes	EBLUPW-SC	MGREG-SC	

NOTE: In SYN, weights are ignored in the estimation procedure by default. In GREG, weights are incorporated in the estimation procedure by default.

Robustness of estimators to model choice: Means of average ARB (%) and average RRMSE (%) figures of model-dependent and model-assisted estimators of domain totals (number of estimators in parenthesis).

Estimator		eans of average RB (%) figure		Means of average RRMSE (%) figures Domain size class			
	Do	main size cla	ISS				
	Minor (20–69)	Medium (70–119)	Major (120+)	Minor (20–69)	Medium (70–119)	Major (120+)	
Model-depe	ndent estim	ators					
SYN (8)	12.1	12.3	11.7	13.4	13.0	12.1	
EBLUP (7)	8.3	8.3	7.7	8.7	8.7	8.1	
All (15)	10.3	10.4	9.8	11.2	11.0	10.2	
Model-assis	ted estimat	ors					
GREG (8)	0.4	0.2	0.1	8.8	5.1	3.7	
MGREG (4)	0.2	0.1	0.1	8.7	5.1	3.6	
All (12)	0.3	0.2	0.1	8.8	5.1	3.6	


LG type	estimate	ors of do	main to	otais.			
	Av	Average ARB (%)			Average RRMSE (%)		
Model and		Domain size class		Domain size class			
estimator	Minor (20-69)	Medium (70-119)	Major (120+)	Minor (20-69)	Medium (70-119)	Major (120+)	
Model A1 y _k :	$=\beta_{0d}+\varepsilon_k$						
GREG-SC	1.4	0.5	0.3	13.7	8.1	5.7	
Model A2 y_k =	$=\beta_0 + u_d + \varepsilon_d$	k					
MGREG-SC	0.2	0.2	0.1	13.7	8.1	5.6	
Model B1 y_k =	$= \beta_{0d} + \beta_1 x_{1k}$	$+\varepsilon_k$					
GREG-SC	0.2	0.1	0.0	7.8	4.6	3.2	
Model B2 y_k =	$=\beta_0 + u_d + \beta$	$\varepsilon_1 x_{1k} + \varepsilon_k$					
MGREG-SC	0.2	0.1	0.0	7.8	4.6	3.3	
Model C1 y_k =	$= \overline{\beta}_{0d} + \overline{\beta}_2 x_{2k}$	$\varepsilon + \varepsilon_k$					
GREG-SC	1.4	0.5	0.3	11.6	6.8	4.8	
Model C2 y_k :	$=\beta_0+u_d+\beta$	$S_2 x_{2k} + \mathcal{E}_k$					
MGREG-SC	0.2	0.1	0.1	11.6	6.8	4.7	
Model D1 y_k =	$=\beta_{0d}+\beta_1 x_{1k}$	$+\beta_2 x_{2k} + \varepsilon_k$:				
GREG-SC	0.0	0.0	0.0	1.7	1.0	0.7	
Model D2 y_k :	$=\beta_0+u_d+\beta$	$\beta_1 x_{1k} + \beta_2 x_{2k} \cdot$	$+ \mathcal{E}_k$ (Popul	lation genera	ting model)		
MGREG-SC	0.0	0.0	0.0	1.7	1.0	0.7	

	Ave	erage ARB (%	6)	Average RRMSE (%)			
Model and	Do	Domain size class			main size clas	S	
estimator	Minor	Medium	Major	Minor	Medium	Major	
	(20-69)	(70-119)	(120+)	(20-69)	(70-119)	(120+)	
Model A $y_k = p$	$\beta_0 + u_d + \varepsilon_k$						
EBLUP-SC	22.9	23.1	21.7	22.9	23.3	21.8	
EBLUPW-SC	3.7	3.5	3.3	3.9	3.6	3.5	
Model B $y_k = \mu$	$\beta_0 + u_d + \beta_1 x$	$\varepsilon_{1k} + \varepsilon_k$					
EBLUP-SC	1.8	1.4	0.7	2.8	2.5	2.2	
EBLUPW-SC	3.5	3.5	3.3	3.5	3.6	3.3	
Model C $y_k = p$	$\beta_0 + u_d + \beta_2$	$x_{2k} + \mathcal{E}_k$					
EBLUP-SC	22.3	23.1	21.8	22.4	23.2	21.9	
EBLUPW-SC	3.7	3.6	3.2	3.9	3.7	3.3	
Model D $y_k = p$	$\beta_0 + u_d + \beta_1 x$	$x_{1k} + \beta_2 x_{2k} + \beta_3 x_{2k}$	\mathcal{E}_k (Popula	tion generati	ng model)		
EBLUP-SC	0.3	0.1	0.0	1.3	0.8	0.6	

Concluding remarks Model-assisted GREG Model-dependent family **EBLUP** family Bias remained negligible Bias can be large for a for all model choices misspecified model Double-use of the same PPS design could be accounted for with two auxiliary information appeared to be beneficial options Sampling design phase Inclusion of size variable into the model Modelling phase Use of a weighted version Mixed model formulation of EBLUP did not outperform fixed-• The squared bias effects model formulation component still dominated strongly the MSE

References: Books and reports

- Lehtonen R. and Djerf K. (eds). Lecture Notes on Estimation for Population Domains and Small Areas. Helsinki: Statistics Finland, Reviews 2001/5.
 - Ghosh M. Model-dependent small area estimation: theory and practice.
 - Särndal C.-E. Design-based methodologies for domain estimation.
- Lehtonen R. and Pahkinen E. (2004). Practical Methods for Design and Analysis of Complex Surveys. Second Edition. Chichester: Wiley. (Chapter 6)
- Longford N.T. (2005). Missing Data and Small-Area Estimation. Modern Analytical Equipment for the Survey Statistician. New York: Springer.
- Rao J.N.K. (2003). Small Area Estimation. Hoboken, NJ: Wiley.
- Särndal C.-E., Swensson B. and Wretman J. (1992). Model Assisted Survey Sampling. New York: Springer

