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Finite population U = {ui,u2,...,un}.

Unknown population total of y:

Horvitz-Thompson estimator
t, = E — = E d
Yy ™ EYk
kes kes

m,=P(ke€s), k=1,...,N — inclusion probability of the element k£ € U,

dp, = 1/7,, k € U — design weights.



There are many survey variables in a real survey
y(1 oy

In practice:

the same auxiliaries are being used for all variables,
the same weights for all variables.

Example.

Lithuanian survey on wages and salaries. The estimates of differ-
ent totals can be more accurate, when using different auxiliaries
for different variables compare to the case all for all.



g study variables y(1), ... 4@

J auxiliary variables

Population element ¢ study variables

J auxiliary variables

1

Uy — yg ) ,y§‘~’) a; = (a11,...,a17)
1

up — yé ),---,yéq) ao = (an1,...,a2y)
1

uN — y](\;),---,y](\?) ay = (an1,.--,any)

totals ) =y Nyl ta= YN . a



Problems

1. How to chose the auxiliary variables? (2J different choices
for each y(1)

2. How to define a regression estimator of
the ratio?
the population variance?

the population covariance?



Calibrated estimator of the total ¢, (Deville and Sadrndal (1992)):

tw = Z Wi Y
kEs

a) using weights w; the known total t; is estimated without
error:

Ea = Z Wl A — ta,
kes

b) the distance between the weights d; and weights wy is
minimal according to the loss function L.



Examples of distance functions

Ly = (wi, — dg)?
d Y
kES ka
Wi W 1 (\/wk _ \/@)2
L2=Z—|09d — —(wg, — dg) , L3=) 2 :
d w 1 wi. — d 2
L4:Z——k'09d—k+—(wk—dk% L5=Z( ki) :
kes 9k k qi kes WEq
2 2
1 1 /./
s 9k \ dk e ak \Vdj,

q., k=1,...,N, — free additional weights



GREG estimator

(wy, — d,)?
Ly=3 i
kes k9k

GREG (calibrated) estimator of the total:

~1
tw =Y wpyp =ty + (ta— ta)’< > qukaka§€> > apardiyy

kEs kes kEs

Example 1. If J =1, (a; = a;) and g = 1/a;, then

7 _
“ta, ta=Ykesdpay, ta = S

a

tw

tw — ratio estimator.



Example 2. If J =2, a = (1,a;)’ and ¢, = 1, we have

tw — Standard regression estimator.

It the case of simple random sample (7 = %):

7 Zies(Wi —y)(a; —a) _ Say

Sics(a; —a)? 5§




Example. Estimation of the ratio of two totals.

Two study variables

v — {y1,v2,.-.,Un}

z — {z1,22,...,2N}

Two auxiliaries with known values
— }ote= ZN a
a a1,ap,...,ayn a k=1 Ak

b — {b1,bo,...,by} tpy =4 _ by
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Parameter

Estimator

ou)

R Z]kvzl Yk
N
Zk‘:l 25
1
D kes w;ﬁ )yk

ZkES wl(cQ) 2k
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Calibration equation (nonlinear):

(1) N
Dokes Wi Ok 2p—q Qf _

— RO
N
2_kes w](f) bk Zk:l bk,
LLoss function
(1) —d 2 (2) —d 2
kes Ok K hes Ok Ak

qi. — free additional weights
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Proposition. The weights w,gl), w,EQ), k € s, of the calibrated
estimator R, which satisfy (nonlinear) calibration equation and
minimize L are given by

(D = k<1_ (1 —a) Xkesdi(ar — Roby)
" (1 — @) Ykes draras + aR3 Y ke drarbs

qkak>, k¢ s.

a Y resdp(ap — Roby)
(1 — @) Ykes drarar + Réa Y ke drarbs

’wlgz) s dkz<1+ ROkak>a k€ s.

Here o is

. \/Zkés deka%
Vkes drar B3 + \/Shes drana?

«
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Comments.

1. The approximate variance is calculated and estimator of the
variance of f%w IS constructed.

2. It is not easy to compare analytically }A%w with the estimator
when regression (calibrated) estimators are used in the nominator
and denominator, even in the case of simple random sample.

3. The explicit solution also exists in the case loss function

(1) 2 (2) 2
Lg=ad 1<w§k —1> +(1-a)d 1<wc’;k —1>

kes dk
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Comparison of approximate variances
(Krapavickaité & Plikusas (2005))

The approximate variance of the calibrated estimator of the ratio
IS not larger than approximate variance of the straight estimator
of the ratio for SRS and a = 1/2:

AVar(Ryw) < AVar(R) .

> kes Ak Yk
> kes Ak 2k

R =
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Ratio estimator of the ratio

plrat) — (@/ia) la
(t=/th) ty

Approximate variance of the calibrated estimator of the ratio is
not larger than approximate variance of the ratio estimator of

the ratio for SRS and a = 1/2:
AVar(Ry) < AVar(E(Tat)) .
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Preliminary simulation results show, that the calibrated estimator
of the ratio have smaller MSE compare to the estimator when
regression estimators are taken in nominator and denominator.

The best gain is in the case

p(y,z) =0.1 p(y,a) =0.8 p(z,b) =08 p(a,b)=0.1
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Estimation of the population covariance

1 N

YOS S AICEES )

k=1

Couy, 2) = -~

Standard estimator
1
N —1

1
> dk(?Jk N

keEs

Cov(y,z) =

kes kes

> dkyk) (Zk —— > dpz).
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Auxiliary variables a and b
{a1,a2,...,an}

{by,bo,...,bx}

Covariance between a and b: Cov(a,b)

T he calibrated estimator

_ 1 1 1
Covw(y, 2) = N _ 1 kz: Wi, (yk TN Z ’wkyk) (Zk TN Z wk%)
€s kes kes

of the covariance Cov(y,z) can be defined under the following
conditions:

a) the weights w;, satisfy some calibration equation;

b) the distance between the design weights d; and calibrated
weights wy is minimal under the some loss function L.
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Calibration equations

Nonlinear
S S wi(an - S whan ) (b - o X wibi) = Coula,b); (D
Wi\ Qf — —— WAL E~— wio | = CLovla,0),
N —1 kEs N kEs N kEs
Linear
1
N1 kz wy(ax, — pa) (b, — 1) = Cov(a, b); (2)
€S
Here
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It should be noted that in the case of the calibration equation
(1) the explicit solution of the minimization problem does not
exist even in the case of loss function L1 The iterative equations
can be used to find the calibrated weights.

The case when calibration equation (2) is used can be called
linear calibration, because here we are calibrating the total of
the variable (a — pa) (b — wp).
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Another possible calibrated estimator

Covy(y,2) = Z ’w(a”b)( Z wk yk) (

kEs kEs

Calibration equation

1)
Z w](ga)ak = taq, Z wl(eb)bk — tb
k‘GS kGS
1 Z w(a’b) (ak — Ma) (bk - Nb) = Cov(a,b);
N —1 kes ¢ |
2)

Z wk Zk)

kES
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LLoss function

(a) dk)2 (2) dk)2 (wlgaab) . dk)Q

L = o1 Z (wy +ao Z +a3 Z

kES dk Qk kES dk Qk kES dkj qk:

o) +oap+az =1
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Estimation of functions of totals.
g variables y(1) ... y(@)
(D Z SO = Z y@
(t(l), . (q)) parameter we are interested.

Simplest procedure:

({1), .. ,#yQ)) — estimator of # (no auxiliaries).
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Suppose there are auxiliaries a(l), ... al?) assigned to the vari-
ables y(l), . ,y(‘J). Calibrated estimators %1@/), . ,ﬁﬁy) oft?gl), . ,t?(ﬁ),
and

O = f(ﬁuly), . ,ﬁwqg) — calibrated estimator of 6

1. Use the same weights (the same collection of auxiliary vari-
ables) for all totals:

oy =3 wiyt?, o T =Y w?

kEs keEs

2. Use different weights (different collections of auxiliary vari-
ables)

1
oy = > wily, B = w @y
kes kes
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Denote

) = Sl =1,
keEs

The calibrated weights wlgj) can be defined by the conditions

a) for some (it may be vector valued) functions g; and g»
~(1 - 1
g1(Ed ... ) = go(t5Y, ..., £59)
1
2_kes w,ﬁ Jay Y a
— N
2_kcs w]gz)bk: 2 =1 b%

e.d.

b) the weight systems w,gj) are as close as possible to the
design weights d;. according to some loss function L.

The calibrated estimator of 6 = f(tél), . ,t?S‘D) be § = f(éuly), . ,éuqy)).
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We can take the loss function

q (,w(J) o dk)2
L = Z Oéj Z k

with a;; > 0 and 2%_; aj = 1. The loss function is minimized also
by aj, j = 1,...,q. Of course, the existence of the solution of
such calibration problem is under the question. The simulation
examples of calibration of covariance show that for properly cho-
sen iterative equations and loss functions the calibrated weights
exist for almost all samples.
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T hank you for attention!
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