#### The cube method

Yves Tillé University of Neuchâtel

May 19, 2006

### Idea and History

- ► Idea : Same means in the population and the sample for all the auxiliary variables.
- ightharpoonup Balanced sampling eq purposive selection
- Random balanced sampling
- Yates (1949), Thionet (1953), Royall and Herson (1973), Deville, Grsbras and Roth (1988), Ardilly (1991) Hedayat and Majumar (1995), Brawer (1999) Deville and Tillé (2004), Deville and Tillé (2005),

#### Notation

- Auxiliary variables  $x_1, ..., x_p$ , known for each unit of the population.
- $ightharpoonup \mathbf{x}_k = (x_{k1},...,x_{kp})'$ , is known for all  $k \in U$ .
- ▶ The vector of totals  $\mathbf{X} = \sum_{k \in \mathcal{U}} \mathbf{x}_k$ .
- ▶ The Horvitz-Thompson estimator of the vector of totals

$$\widehat{\mathbf{X}}_{\pi} = \sum_{k \in S} \frac{\mathbf{x}_k}{\pi_k}.$$

▶ The aim is always to estimate  $\widehat{Y}_{\pi} = \sum_{k \in S} \frac{y_k}{\pi_k}$ .

#### **Definition**

#### ▶ Definition

A sampling design p(s) is said to be balanced on the auxiliary variables  $x_1,...,x_p$ , if and only if it satisfies the balancing equations given by  $\widehat{\mathbf{X}}_{\pi} = \mathbf{X}$ , which can also be written

$$\sum_{k \in s} \frac{x_{kj}}{\pi_k} = \sum_{k \in U} x_{kj},$$

for all  $s \in \mathcal{S}$  such that p(s) > 0, and for all j = 1, ..., p, or in other words

$$\mathsf{Var}\left(\widehat{\mathbf{X}}_{\pi}
ight)=\mathsf{0}.$$

#### Example 1

A sampling design of fixed sample size n is balanced on the variable  $x_k = \pi_k, k \in U$ . Indeed,

$$\sum_{k\in\mathcal{S}}\frac{x_k}{\pi_k}=\sum_{k\in\mathcal{S}}1=\sum_{k\in\mathcal{U}}\pi_k=n.$$

### Example 2

Stratification with strata  $U_h, h = 1, ..., H, \#U_h = N_h$ Simple random sample of size  $n_h$  in each stratum The design is balanced on variables  $\delta_{kh}$  of values

$$\delta_{kh} = \left\{ \begin{array}{ll} 1 & \text{if } k \in U_h \\ 0 & \text{if } k \notin U_h. \end{array} \right.$$

Indeed 
$$\sum_{k \in S} \frac{\delta_{kh}}{\pi_k} = \sum_{k \in S} \delta_{kh} \frac{N_h}{n_h} = N_h$$
, for  $h = 1, ..., H$ .

### Example 3

 $N = 10, n = 7, \pi_k = 7/10, k \in U,$  $x_k = k, k \in U.$ 

$$\sum_{k\in\mathcal{S}}\frac{k}{\pi_k}=\sum_{k\in\mathcal{U}}k,$$

which gives that

$$\sum_{k \in S} k = 55 \times 7/10 = 38.5,$$

IMPOSSIBLE: Rounding problem.

Aim: find a sample approximately balanced!

Cube representation
Balancing equations
Examples
The phases
Examples
Balancing martingale
Flight Phase
Landing Phase

#### Cube representation

► Geometric representation of a sampling design.

$$s = (I[1 \in s] \dots I[k \in s] \dots I[N \in s])',$$

where  $I[k \in s]$  takes the value 1 if  $k \in s$  and 0 if not.



Possible samples in a population of size N = 3

Cube representation
Balancing equations
Examples
The phases
Examples
Balancing martingale
Flight Phase
Landing Phase

#### Cube representation

▶ Geometrically, each vector **s** is a vertex of a *N*-cube.

$$E(s) = \sum_{s \in S} \rho(s)s = \pi,$$

where  $\pi = [\pi_k]$  is the vector of inclusion probabilities.

Cube representation
Balancing equations
Examples
The phases
Examples
Balancing martingale
Flight Phase
Landing Phase

### Balancing equations

► The balancing equations

$$\sum_{k \in S} \frac{\mathbf{x}_k}{\pi_k} = \sum_{k \in U} \mathbf{x}_k,$$

can also be written

$$\sum_{k\in U}\mathbf{a}_ks_k=\sum_{k\in U}\mathbf{a}_k\pi_k \text{ with } s_k\in\{0,1\}, k\in U,$$

where  $\mathbf{a}_k = \mathbf{x}_k/\pi_k, k \in U$ .

- ▶ The balancing equations defines a linear subspace in  $\mathbb{R}^N$  of dimension N-p denoted Q.
- ► The problem: Choose a vertex of the N-cube (a sample) that remains on the linear sub-space Q.

### System exactly verifiable

#### Example

$$\pi_1 + \pi_2 + \pi_3 = 2.$$
  
 $x_k = \pi_k, k \in U \text{ and } \sum_{k \in U} s_k = 2.$ 



Figure: Fixed size constraint: all the vertices of K are vertices of the cube sage

# System approximately verifiable

#### Example

- ▶  $6 \times \pi_2 + 4 \times \pi_3 = 5$ .
- $x_1 = 0, x_2 = 6 \times \pi_2 \text{ and } x_3 = 4 \times \pi_3.$



# System sometimes verifiable

#### Example

$$\pi_1 + 3 \times \pi_2 + \pi_3 = 4.$$

$$x_1 = \pi_1, x_2 = 3 \times \pi_2 \text{ and } x_3 = \pi_3.$$

$$s_1 + 3s_2 + s_3 = 4$$
.



#### Cube methods: phases

- ► Cube method (Deville and Tillé, 2004)
  - 1. flight phase
  - 2. landing phase (needed only it there exists a rounding problem)
- ▶ The flight phase is a random walk that begins at the vector of inclusion probabilities and remains in the intersection of the cube and the constraint subspace.
  - This random walk stops at a vertex of the intersection of the cube and the constraint subspace.
- ▶ The landing phase At the end of the flight phase, if a sample is not obtained, a sample is selected as close as possible to the constraint subspace.



#### Cube methods: examples

► Example

The constraints is the fixed sample size. The flight phase transforms a vector of inclusion probabilities into a vector of 0 and 1.

$$m{\pi} = egin{pmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{pmatrix} 
ightarrow egin{pmatrix} 0.6666 \\ 0.6666 \\ 0.6666 \\ 0 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \\ 0.5 \\ 0.5 \\ 0 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \mathbf{S}.$$

Maximum N - p steps.



#### Cube methods: examples

#### ► Example

If there exists a rounding problem, then some components cannot be put to zero.

$$m{\pi} = egin{pmatrix} 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \end{pmatrix} 
ightarrow egin{pmatrix} 0.625 \ 0.625 \ 0.625 \ 0.625 \end{pmatrix} 
ightarrow egin{pmatrix} 0.5 \ 0 \ 0.5 \ 1 \ 0.5 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.25 \ 1 \ 0.25 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 1 \ 0.25 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 1 \ 0.25 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 1 \ 0.25 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 1 \ 0.25 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 1 \ 0.25 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 1 \ 0.25 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 1 \ 0.25 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 1 \ 0.25 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 1 \ 0.25 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 1 \ 0.25 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 1 \ 0.25 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 1 \ 0.25 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \end{pmatrix} 
ightarrow egin{pmatrix} 1 \ 0 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5$$

In this case, the flight phase let one non-integer components.

### Balancing martingale



# Balancing martingale

#### ▶ Definition

A discrete time stochastic process  $\pi(t) = [\pi_k(t)], t = 0, 1, ...$  in  $\mathbb{R}^N$  is said to be a balancing martingale for an inclusion probability vector  $\pi$  and the auxiliary variables  $x_1, ..., x_p$ , if

- 1.  $\pi(0) = \pi$ ,
- 2.  $E[\pi(t)|\pi(t-1),...,\pi(0)] = \pi(t-1), t = 1,2,...$
- 3.  $\pi(t) \in K = \{[0,1]^N \cap (\pi + \text{Ker } \mathbf{A})\}$ , where  $\mathbf{A}$  is the  $p \times N$  matrix given by  $\mathbf{A} = (\mathbf{x}_1/\pi_1 \dots \mathbf{x}_k/\pi_k \dots \mathbf{x}_N/\pi_N)$ .
- 4. In other words, a balancing martingale is such that  $\pi(t-1)$  is in the center of the following possible values of  $\pi(t)$ .

# Balancing martingale

▶ If  $\pi(t)$  is a balancing martingale, then

(i) 
$$E[\pi(t)] = E[\pi(t-1)] = ... = E[\pi(0)] = \pi$$
.

(ii) 
$$\sum_{k \in U} \mathbf{a}_k \pi_k(t) = \sum_{k \in U} \mathbf{a}_k \pi_k = \mathbf{X}, t = 0, 1, 2, ....$$

(iii) When the balancing martingale reaches a face of K, it remains "stuck" on this face.

#### Flight Phase

First initialize with  $\pi(0) = \pi$ . Next, at time t = 1, ...., T,

- 1. Generate any vector  $\mathbf{u}(t) = [u_k(t)] \neq 0$  such that (i)  $\mathbf{u}(t)$  is in the kernel of matrix  $\mathbf{A}$ (ii)  $u_k(t) = 0$  if  $\pi_k(t)$  is integer.
- 2. Compute  $\lambda_1^*(t)$  and  $\lambda_2^*(t)$ , the largest values such that  $0 \leq \pi(t) + \lambda_1(t)\mathbf{u}(t) \leq 1$ ,  $0 \leq \pi(t) \lambda_2(t)\mathbf{u}(t) \leq 1$ .
- 3. Compute

$$\pi(t) = \left\{ \begin{array}{ll} \pi(t-1) + \lambda_1^*(t) \mathbf{u}(t) & \text{with a proba } q_1(t) \\ \pi(t-1) - \lambda_2^*(t) \mathbf{u}(t) & \text{with a proba } q_2(t), \end{array} \right.$$
 where  $q_1(t) = \lambda_2^*(t)/\{\lambda_1^*(t) + \lambda_2^*(t)\}$  and  $q_2(t) = 1 - q_1(t)\}$ .

# Landing Phase 1

Let  $\pi^* = [\pi_k^*]$  the vector obtained at the last step of the flight phase.

|   | Inclusion     | Flight        | Landing         |
|---|---------------|---------------|-----------------|
| • | probabilities | Phase         | phase           |
|   | $\pi$         | $	o m{\pi}^*$ | $\rightarrow S$ |

It is possible to proof that

$$\operatorname{card} U^* = \operatorname{card} \left\{ k \in U \middle| 0 < \pi_k^* < 1 \right\} = q \leq p.$$

- The aim of the landing phase is to find a sample **S** such that  $E(\mathbf{S}|\boldsymbol{\pi}^*) = \boldsymbol{\pi}^*$ , and that is almost balanced.
- ▶ Solution: linear program defined only on  $q \le p$  units.



Cube representation
Balancing equations
Examples
The phases
Examples
Balancing martingale
Flight Phase
Landing Phase

### Landing Phase 2

- If the number of auxiliary variables is too large for the linear program to be solved by a simplex algorithm, q>13 then, at the end of the flight phase, an auxiliary variable can be dropped.
- Next, one can return to the flight phase until it is no longer possible to 'move' within the constraint subspace. The constraints are thus relaxed successively.

### Main applications

- New French census
  - ► For the mulicipalities < 10000 inhab., selection of 5 rotations groups of municipalities.
  - ► For the mulicipalities > 10000 inhab., selection of 5 rotations groups of addresses.
- Master sample in France: selection of the primary units.

#### Example: 245 municipalities of the Swiss Ticino canton

Table: Balancing variables of the population of municipalities of Ticino

| POP | number of men and women                          |  |  |
|-----|--------------------------------------------------|--|--|
| ONE | constant variable that takes always the value 1  |  |  |
| ARE | area of the municipality in hectares             |  |  |
| POM | number of men                                    |  |  |
| POW | number of women                                  |  |  |
| P00 | number of men and women aged between 0 and 20    |  |  |
| P20 | number of men and women aged between 20 and 40   |  |  |
| P40 | number of men and women aged between 40 and 65   |  |  |
| P65 | number of men and women aged between 65 and over |  |  |
| HOU | number of households                             |  |  |

### Example: sampling design

- ▶ Inclusion probabilities proportional to size.
- Big municipalities are always in the sample Lugano, Bellinzona, Locarno, Chiasso, Pregassona, Giubiasco, Minusio, Losone, Viganello, Biasca, Mendrisio, Massagno.
- ➤ Sample size = 50.
- ▶ the population totals for each variable  $X_j$ ,
- lacktriangle the estimated total by the Horvitz-Thompson estimator  $\widehat{X}_{j\pi}$ ,
- the relative deviation in % defined by

$$\mathsf{RD} = 100 imes rac{\widehat{X}_{j\pi} - X_j}{X_i}.$$

### Example: Results

Table: Quality of balancing

| Variable | Population | HT-Estimator | Relative       |
|----------|------------|--------------|----------------|
|          | total      |              | deviation in % |
| POP      | 306846     | 306846.0     | 0.00           |
| ONE      | 245        | 248.6        | 1.49           |
| HA       | 273758     | 276603.1     | 1.04           |
| POM      | 146216     | 146218.9     | 0.00           |
| POW      | 160630     | 160627.1     | -0.00          |
| P00      | 60886      | 60653.1      | -0.38          |
| P20      | 86908      | 87075.3      | 0.19           |
| P40      | 104292     | 104084.9     | -0.20          |
| P65      | 54760      | 55032.6      | 0.50           |
| HOU      | 134916     | 135396.6     | 0.36           |

#### **FAQ**

- ▶ Why not use calibration in place of balancing?

  Stratification is a particular case of balancing, post-stratification is a particular case of calibration. In stratification and balancing, the weights does not become random.
- How accurate is the approximation with the cube method?

$$\left|\frac{\widehat{X}_j-X_j}{X_j}\right|< O(\rho/N)\leq O_p(\sqrt{1/n}).$$

- ▶ What is the limit for the size of the population? If depends on the program: N=200000, p=40 is possible.
- ► How to estimate the variance? By a residual technique see Deville and Tillé (2005)
- ▶ What is the best strategy, balancing of calibration? Both techniques can be used together.

#### References

- Deville, J.-C. and Tillé, Y. (2004). Efficient balanced sampling: The cube method. *Biometrika*, 91:893–912.
- Deville, J.-C. and Tillé, Y. (2005). Variance approximation under balanced sampling. *Journal of Statistical Planning and Inference*, 128:411–425.
- Tillé, Y. (2006). Sampling algorithms. Springer-Verlag, New York.