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Abstract

The users of official statistics often require that sample-based estimates satisfy certain restrictions.
In the domain’s case it is required that the estimates of domain totals sum up to the population total
or to its estimate. The general restriction estimator (GR) proposed by Knottnerus (2003) is described
in this paper, which uses an unbiased initial estimators for its construction. Also three new estimators
that satisfies the linear restriction are proposed and compared. We allow the initial estimators for them
to be biased.
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1 Introduction

Nowadays, demand on accurate statistics of population sub-groups or domains increases. This statistics
can be obtained from surveys, or, sometimes, aggregated from registers. It may happen that even if the
register contains variables under interest, it does not contain identifies of the domains under our particular
interest. As follows, these domain totals can not be produced from that register, they need to be estimated
from a survey. The survey has to collect information on the same study variable but together with domain
identifiers. As a result, the consistency problem occurs, the domain estimates from the survey do not
sum up to the totals available from the registers. Analogical problem arises in the multi-survey situation,
where some study variables are common in two or more surveys. Domain estimates from one survey do
not sum up to the estimates of larger domains (or population totals) from another survey. Yet, there is
one more situation where the consistency problem occurs. Domains themselves and the population total
may be estimated by conceptually different estimators in the same survey. As a result, the domain totals
do not sum up to the population total, or to the relevant larger domains.

The described inconsistency is annoying from the statistics users viewpoint. Statisticians know that
the relationships between population parameters do not necessarily hold for the estimates in a sample.
They also know that any auxiliary information incorporated into estimators may increase precision of
these estimators. In our situation known relationships between population parameters is a kind of the
auxiliary information. Involving this information into estimation process presumably improves estimates.
Our goal is to define consistent domain estimators that are more accurate than the initial inconsistent
domain estimators.

The problem is not new, consistency of estimators has been considered for some time. For example, if
consistency is required between two surveys or between a survey and a register, some authors (Zieschang
1990, Renssen and Nieuwenbroek 1997, Traat and Särndal 2009, Dever and Valliant 2010) have proposed
classical calibration approach as a solution. In this approach, the common variables are considered as ad-
ditional auxiliary variables, and consistency requirement is presented in terms of calibration constraints.
Other authors (Kroese and Renssen 1999, Knottnerus and Van Duin 2006) use different calibration ap-
proach for this situation, called repeated weighting. They re-calibrate the initially calibrated estimators
to satisfy the consistency constraints with outside information.

Yet another approach is proposed by Knottnerus (2003). His estimator is based on the unbiased initial
estimators and is unbiased itself. The advantage of the GR estimator is the variance minimizing property



in a class of linear estimators. Sõstra (2007) has developed the GR estimator for estimating domain totals
under summation restriction. Optimality property of the domain GR estimator is studied in Sõstra and
Traat (2009). In all these works, the unbiased or asymptotically unbiased initial estimators are assumed.

It is well known that there are many useful estimators that are biased. For example, the model-based
small area estimators are design-biased. The synthetic estimator can be biased on the domain level. Even
the widely used GREG estimator is only asymptotically unbiased. In this paper we will allow the vector
of initial estimators θ̂ to be biased, and will construct three new restriction estimators, based on the
biased initial estimators.

2 Estimation under restriction

Let finite population U be divided into D non-overlapping domains Ud, d ∈ D = {1, 2, ..., D}. We
are interested in some domain parameters, for example domain totals, td =

∑
i∈Ud

yi with yi being the
value of study variable for object i. It is natural that domain totals sum up to the population total,∑D

d=1 t
d = t =

∑
i∈U yi.

2.1 Knottnerus’ approach

In general case, we denote the parameter vector under study by θ = (θ1, ..., θk)′, it satisfies linear restric-
tions:

Rθ = c, (1)

where R is an r × k matrix of rank r and c is the r-dimensional vector of known constants.
In a case of domain totals, where

∑D
d=1 t

d = t,

R = (1, 1, ..., 1,−1)1×(D+1), θ = (t1y, t
2
y, ..., t

D
y , ty)′ and c = 0,

or alternatively,
R = (1, 1, ..., 1)1×D, θ = (t1y, t

2
y, ..., t

D
y )′ and c = ty.

Let θ̂ = (θ̂1, ..., θ̂k) be the vector of estimators of θ that do not necessarily satisfy the linear restriction
(1), i.e. Rθ̂ 6= c, in general. Knottnerus (2003, p. 328-329) proposes the following restriction estimator
to solve this problem.

Assume that θ̂ = (θ̂1, ..., θ̂k)′ is unbiased for the parameter vector θ with the variance V, such that
RVR′ can be inverted. Then the general restriction estimator θ̂GR that satisfies restrictions (1) for
θ = θ̂GR, and the variance VGR of this estimator are:

θ̂GR = θ̂ + K(c−Rθ̂), (2)

VGR = Cov(θ̂GR) = (I−KR)V, (3)

where I is the k × k identity matrix and

K = VR′(RVR′)−1. (4)

Since RK is the identity matrix, it is easy to check that θ̂GR satisfies restrictions (1):

Rθ̂GR = Rθ̂ + RK(c−Rθ̂) = c.

Knottnerus (2003, p. 332) shows that θ̂GR is optimal in a class of estimators that are linear in θ̂ and
satisfy restrictions (1). In this class, θ̂GR has minimum variance (in Löwner ordering). For example,
other estimators in this class can be received by replacing V in the expression of K by any arbitrary k×k
matrix V∗, such that RV∗R can be inverted. But the resulting estimators have bigger variance than



θ̂GR. In Sõstra (2007, p. 45) it is also shown that θ̂GR is never less efficient than the initial estimator θ̂,
VGR ≤ V in the sense of Löwner ordering.

Without loss of generality, we further consider linear restrictions in the form

Rθ = 0. (5)

With c = 0, the Knottnerus’ GR estimator simplifies to the form

θ̂GR = (I−KR)θ̂. (6)

For biased estimators the accuracy of the estimator is ordinarily measured by its mean square error.
The GR-estimator (6) with biased initial estimator θ̂ is not optimal any more for θ in the sense of MSE.
Although it still satisfies restrictions (5), it may have bigger mean square error than that of the initial
estimator. For further details see Lepik (2011, p. 36).

In the following section we allow initial estimator to be biased, and we define three different restriction
estimators for this case.

2.2 Restriction estimators handling bias

Assume that estimator θ̂ is biased for θ,
E(θ̂) = θ + b, (7)

where b is a vector of biases.
The first restriction estimator with biased initial estimators is defined in the following proposition.
Proposition 1.The estimator

θ̂GR1 = (I−KR)(θ̂ − b), (8)

with K = VR′(RVR′)−1 is unbiased for θ. Its variance is

Cov(θ̂GR1) = (I−KR)V, (9)

and it is the optimal estimator among all linear estimators in (θ̂ − b) that satisfy restriction (5).
For the proofs of this result and the following propositions see Lepik (2011, pp. 38-42).
Similarly to Knottnerus GR estimator our θ̂GR1 requires quantities that are usually unknown in

practise, here the bias b and the variance V. If V and b are replaced with consistent estimators, θ̂GR1 is
consistent itself.

Below we define an estimator that is free of the knowledge of b, satisfies restrictions and is more
accurate than the initial estimator θ̂, in MSE terms.

Proposition 2.The estimator, satisfying restrictions (5), but based on the mean square error M of
the initial estimator θ̂, is

θ̂GR2 = (I−K∗R)θ̂, (10)

where K∗ = MR′(RMR′)−1. The bias of the θ̂GR2 is

b(θ̂GR2) = (I−K∗R)b, (11)

and the mean square error matrix is

MSE(θ̂GR2) = (I−K∗R)M. (12)

Furthermore,
MSE(θ̂GR2) ≤M (13)

in the sense of Löwner ordering.
The third estimator with its properties is proposed in the following proposition.



Proposition 3.The restriction estimator

θ̂GR3 = (I−K∗R)(θ̂ − b) (14)

with K∗ = MR′(RMR′)−1 satisfies restrictions (5) and is unbiased for θ̂. It’s MSE is the covariance of
the estimator and is equal to

MSE(θ̂GR3) = (I−K∗R)V(I−K∗R)′. (15)

Furthermore,
MSE(θ̂GR3) ≤M. (16)

It easy to ensure that GR estimator (6) is the particular case of the estimators θ̂GR1, θ̂GR2 and θ̂GR3,
if the vector of initial estimators has the zero bias, b = 0. These estimators have higher accuracy than
the initial estimator θ̂ in a term of MSE. The next result compares the accuracy of all four estimators.

Proposition 4.The mean square error matrices of the restriction estimators θ̂GR1, θ̂GR2, θ̂GR3 and
the initial estimator θ̂ can be ordered (in the sense of Löwner ordering) as following:

MSE(θ̂GR1) ≤MSE(θ̂GR3) ≤MSE(θ̂GR2) ≤MSE(θ̂). (17)

2.3 Some thoughts for the future research

Estimators GR1 and GR3 requires the knowledge of the bias b. In practise it is usually not known,

sometimes can be estimated. The behavior of the estimators
ˆ̂
θGR1 = (I − KR)(θ̂ − b̂) and

ˆ̂
θGR3 =

(I−K∗R)(θ̂ − b̂) is not studied yet.
Analogical situation is with the quantities V and M. If to replace these quantities with their unbiased

estimates, then the ordering of the MSEs of GR1, GR2 and GR3 is not necessarily hold.
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