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Abstract

The purpose of this paper is to study novel tools that measure
balance of the response set against the full sample with respect to aux-
iliary variables. A measure called ”lack of balance” is introduced. Its
statistical properties are explored and an instrument called ”balance
indicator” is defined. Illustrative examples about the special cases of
the balance indicator and related matters are given. A practical exper-
iment was carried out on real data to illustrate theory about balance
indicators. The experiment confirmed that balance indicator really
shows balance under random or independent nonresponse and imbal-
ance under dependent (on auxiliary variables) nonresponse.
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1 Introduction

The purpose of survey sampling is to give information about unknown pa-
rameters in the population U = {1, . . . , N}. Depending on the purpose
and scope of the survey, special sampling design is used in U . With the
design, inclusion probabilities, weights and other design characteristics are
defined. For every object k ∈ U we have positive inclusion probabilities
πk = P (k ∈ s) > 0 and for every object k ∈ s we have a design weight
dk = 1/πk.
Nowadays, nonresponse is a very common issue in survey sampling. There
are always objects, from whom information is not received. We refer to the
response set with symbol r. For example, many people with higher salary
will not give their income data which leads to imbalanced response set with
respect to the full sample. Survey estimates from respondents will then have



nonresponse bias. Special efforts should be made already at the data collec-
tion stage to measure nonresponse effect, and possibly to reduce this effect.
In this paper we introduce and study the tools given in Särndal (2011), and
explored in Mätik (2012).

2 Response Rate and Response Probabilities

Lets assume we have the probability sample s with size n which means we
have the objects with some auxiliary information that we gathered from the
registers. But only a subset r with size m from s responds. Response rate
is defined as

P =

∑
r dk∑
s dk

. (1)

We see that for equal dk, P = m/n. The response indicator I is the binary
random variable, observed for k ∈ s, with value Ik = 1 for k ∈ r and Ik = 0
for k ∈ (s− r).

Definition 2.1 The response probability for object k ∈ s is defined through
response indicator in a following way,

E(Ik|s) = P (Ik = 1|s) = θk. (2)

Response probabilities for all k ∈ s are unknown parameters.

3 Measuring Lack of Balance

Assume we know a J−dimensional auxiliary variable vector xk for each
k ∈ s.

Definition 3.1 We call the response set r balanced when the means for
appropriate auxiliary variables in r equal to corresponding means in the
sample s.

We consider auxiliary vectors xk which for some constant vector µ 6= 0,
satisfy

µ′xk = 1 for all k ∈ U. (3)

We define two J-dimensional mean vectors and two computable J × J non-
singular weighting matrices:

x̄r;d =
∑

r
dkxk

/∑
r
dk, (4)



Σr =
∑

r
dkxkx

′
k

/∑
r
dk, (5)

x̄s;d =
∑

s
dkxk

/∑
s
dk, (6)

Σs =
∑

s
dkxkx

′
k

/∑
s
dk. (7)

Auxiliary vectors that satisfy (3) also satisfy on all outcomes (s,r):

x̄
′
r;dΣ

−1
r x̄r;d = x̄

′
r;dΣ

−1
r x̄s;d = x̄′r;dΣ

−1
s x̄s;d = x̄

′
s;dΣ

−1
s x̄s;d = 1. (8)

Definition 3.2 A measure

D
′
Σ−1s D = (x̄r;d − x̄s;d)

′
Σ−1s (x̄r;d − x̄s;d), (9)

is defined as lack of balance indicator. It is a quadratic form in the differences
in auxiliary variable means between the response set and the whole sample.

The lack of balance indicator refers to balance when the auxiliary variable
means between the response set and the whole sample are equal, then D = 0
and D

′
Σ−1s D = 0.

For one dimensional auxiliary vector xk = xk, the lack of balance indicator
is

D
′
Σ−1s D = (x̄r;d − x̄s;d)2 ·

∑
s dk∑

s dkx2
k

.

4 Estimated Response Probabilities

Looking for an estimator of θk, linearly depending on xk,

θ̂k = λ
′
xk, (10)

one gets,

θ̂k = tk = (
∑

r
dkxk)

′
(
∑

s
dkxkx

′
k)−1xk. (11)

The mean over r, and the mean and variance over s of the estimated response
probabilities tk are now related to the response rate P and lack of balance
indicator in the following way:

t̄r;d = P × x̄
′
r;dΣ

−1
s x̄r;d, (12)

t̄s;d = P, (13)

S2
t|s;d = t̄s;d(t̄r;d − t̄s;d) = P 2 ×D

′
Σ−1s D. (14)



For constant response probability estimates, θ̂k = tk = c, the variance of the
estimates is zero. Consequently, for P 6= 0 the lack of balance indicator is
zero for tk = c. Thus, for constant response probabilities the response set r
is always balanced and represents the whole sample s.

We see that (13) and (14) now define the lack of balance indicator as the
coefficient of variation of estimated response probabilities,

cvt|s;d =
St|s;d

t̄s;d
=

√
P 2 ×D

′
Σ−1s D

P
= (D

′
Σ−1s D)1/2.

The upper bound of the lack of balance indicator is

D
′
Σ−1s D ≤ Q− 1,

where Q is inverse value of response rate P . We call Q − 1 nonresponse
odds.

5 Balance Indicators

We consider three types of the balance indicators, all of them measured on
the unit interval scale:

BI1 = 1− D
′
Σ−1s D

Q− 1
= 1−

S2
t|s;d

P (1− P )
, (15)

BI2 = 1− 4P 2D
′
Σ−1s D = 1− 4S2

t|s;d, (16)

BI3 = 1− 2P (D
′
Σ−1s D)1/2 = 1− 2St|s;d. (17)

For every outcome (s, r) and a fixed auxiliary vector xk we have

0 ≤ BI1 ≤ BI2 ≤ 1 ja 0 ≤ BI3 ≤ BI2 ≤ 1.

These indexes show complete imbalance with the value 0, and complete bal-
ance with the value 1. It is important to remember, that balance/imbalance
is measured with respect to chosen auxiliary vector.



6 Simulation Example

In this simulation example we used data about Estonian health care em-
ployees. There were 21761 objects in the register and 29 variables were
measured for each individual. In our experiment we used one categorical
variable, education (5 categories), and one continuous variable, age.

In the first part of the experiment we considered a response set that was in-
dependent form any of the variables. Both, the sample s (with size n = 1000)
and the response set r (with size m = 700) were drawn with simple random
sampling. Thus, the response rate was P = 0.7. The theoretical response
probabilities were equal for all k ∈ s, so θk = m/n = 0.7. We calculated the
estimated response probabilities using three auxiliary vectors xk, extended
stepwise. The results are shown in Table 1. The estimates tk had very small
variation around their mean 0.7 which equals theoretical θk. The calculated
balance indicators approve theory that for independent from the variables
response, the response set is balanced and represents the whole sample.

Table 1: Independent nonresponse

Auxiliary vector xk
Estimates tk in sample s

mean sd BI1 BI2
One education category 0.7 0.0020 1.0000 1.0000

Four education categories 0.7 0.0103 0.9995 0.9996

Four education categories and

age

0.7 0.0292 0.9959 0.9966

In the second part of the simulation exercise we drew a simple random sam-
ple s (with size n = 1000) but the response set r (with size m = 700)
was generated as dependent on the variable age. Older people had bigger
response probability. Thus our response set is imbalanced and the balance
indicators should approve it. Again, we calculated the estimated response
probabilities using three auxiliary vectors xk built step by step. The results
are shown in Table 2. The mean of tk is still 0.7 but their variability is now
bigger. For the first two xk vectors, the indicators show balance because
the response was not dependent on the variable education. For the third
auxiliary vector, that includes age, the indicators approve that the response
set is imbalanced.



Table 2: Dependent nonresponse

Auxiliary vector xk
Estimates tk in sample s

mean sd BI1 BI2
One education category 0.7 0.0260 0.9968 0.9973

Four education categories 0.7 0.0272 0.9965 0.9970

Four education categories and

age

0.7 0.1871 0.8333 0.8600

The experiment confirmed that balance indicators show balance under ran-
dom or independent nonresponse. They show imbalance if the variables
related to the response mechanism are included in xk.
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