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Abstract

The purpose of this research is to find optimal strategy (pair of sample design and estimator) for
small area estimation. Thus, the definition of a balanced sample and two special cases of balanced
samples are presented. The study variable and auxiliary information are time series, thus the different
unit level panel-type models are used not only in estimation stage, but and in sample selection stage.
The simulation results showed, that the impact of the chosen model is larger for the small domains
than for the large ones. Also results showed that the use of the panel type model in sample selection
and estimation stages improves the accuracy of the estimate.
Keywords: small area, balanced sample, panel-type model.

1 Introduction

As mentioned by Ghosh & Rao (1994) the term ”small area” and ”local area” are commonly used to
denote a small geographical area, such as a county, a municipality or a census division. They may also
describe a ”small domain”, i.e., a small subpopulation such as a specific age-sex-race group of people
within a large geographical area.
The focus on small area estimation (SAE) is made because the demand for data at lower geographic levels
is always present, especially from local governments and from businesses needing to make investment,
marketing, and location decisions that depend on knowledge of local areas.
The small area problem is usually considered to be treated via estimation (Ghosh & Rao, 1994). However,
if the domain indicator variables are available for each unit in the population there are opportunities to
be exploited at the survey design stage. Thus in this paper I am interesting in an overall strategy that
deals with small area problems, involving both planning sample design and estimation aspects.

2 Main notations

A finite population U = {u1, u2, ..., uN} of the size N is considered. For simplicity, in the sequel we
identify a population element uk and its index k. Hence U = {1, 2, ..., N}.
The elements k (k = 1, . . . , N) of the population U has two components y(t) and x(t). The values of
these components depends on time. The component y(t) defines the value of a study variable (variable
of interest) in time t, and the component x(t) = {x1(t), x2(t), . . . , xJ(t)} ∈ RJ defines the values of the J
auxiliary variables in time t.
The population is divided into D nonoverlapping domains (subpopulations) U (d) of size N (d), where
d = 1, . . . , D. Domain indicator variables define whether k ∈ U belongs to a given domain:

q
(d)
k =

{
1, if k ∈ U (d),
0, otherwise,

∀k ∈ U, d = 1, . . . , D. (1)

The parameter of interest is a domain total in time moment t:

TOT (d)(t) =
∑

k∈U(d)

yk(t) =
∑
k∈U

q
(d)
k yk(t), d = 1, . . . , D; t = 1, 2, . . . (2)



To estimate TOT (d)(t), we need information about unknown variable y(t). This information is collected
by sampling. The sampling vector

S(t) = (S1(t), S2(t), . . . , SN (t)) (3)

is a random vector whose elements Sk(t) indicate the number selections for k in time t. The distribution
of S(t), denoted by p(.), is called a sample design. The realization S(t) = (S1(t), S2(t), . . . , SN (t)) of Sk(t)
is called sample. It define the sample set s(t) = {k : k ∈ U, Sk(t) ≥ 1}.

3 Balanced samples

The sample might be balanced or unbalanced. A sample is said to be balanced if, for a vector of auxiliary
variable z(t) = {z1(t), z2(t), . . . , zL(t)} ∈ RL,∑

k∈s(t)

zk(t)

πk(t)
=
∑
k∈U

zk(t). (4)

In other words, in a balanced sample, the total of the z-variables are estimated without error. Let us note
that two different sets of variables have been introduced in order to underline that the set of variables
available at the design stage ( z variables) could be different from the set available at the estimation stage
(x variables) even if in many practical situations they could be the same. Here, an element’s k inclusion
probability in time t is denoted as πk(t).
Almost all the other sampling techniques are particular cases of balanced sampling. Some well-known
sampling designs are particular cases of balanced sampling:
1. Sampling with a fixed sample size is a particular case of balanced sampling. In this case, the only
balancing variable is πk(t). The balancing equations given in (4) become∑

k∈s

πk
πk

=
∑
k∈s

1 =
∑
k∈U

πk,

which means that the sample size must be fixed.
2. Stratification is a particular case of balanced sampling. In this case, the balancing variables are the
indicator variables of the strata

δkh =

{
1, if k ∈ Uh,
0, otherwise,

(5)

where Uh denotes population part, which belongs to h, h = 1, ...,H strata. Since the inclusion probabilities
in stratum h are πk = nh/Nh, k ∈ Uh, the balancing equations become∑

k∈s

Nhδkh
nh

=
∑
k∈U

δkh = Nh, h = 1, ...,H,

and are exactly satisfied.
The main reason why a balanced sample is used in my research is that the Deville & Tillé (2004) showed,
that the optimal strategy contains a balanced sample. Thus, to select a balanced sample is not easy. The
one of the quickest way to select balanced sample is to use cube method.

3.1 Cube method

The algorithm of the cube method was proposed by Deville & Tillé (1998), and the method was pub-
lished in Tillé (2001) and Deville & Tillé (2004). This method is general in the sense that the inclusion
probabilities are exactly satisfied, that these probabilities may be equal or unequal and that the sample
is as balanced as possible.
It is possible to get SAS/IML version of Cube method done by Chauvet & Tillé (2006) and it is also avail-
able on the University of Neuchatel Web site. This software program is free, available over the Internet
and is easy to use.



4 Model-based sample design

In this paper balanced samples are selected not only using well known simple random sample, stratified
simple random sample, but also using model-based sample (Nekrašaitė-Liegė et al., 2011). The suggested
model-based sample design consists of three steps:

1. Model construction and estimation of it’s coefficients;

2. Estimation of the variance of the prediction error;

3. Construction of the sample design p(.).

In the first step the model is fitted to the available auxiliary data. In the second step the prediction errors
(residuals)

ε̂k(t) = ŷk(t)− yk(t), t ∈ Tk ∈ {1, 2, ..., T.}, (6)

are calculated and the variance of prediction error in each domain, σ(d)2, is estimated. Finally, in the
third step the (approximately) optimal sample design p(.) (actually, the Neyman stratified simple random

sample, (Särndal et al., 2003)) based on the estimated variances σ̂(d)2 is constructed. Thus, the less
model-based prediction accuracy in the domain the more elements from this domain are drawn.

5 Estimators and models

After the sample is selected the domain total is calculated using GREG-type (Lehtonen et al., 2003)
estimator:

T̂OT
(d)

GREG(t) =
∑

k∈U(d)

ŷk(t) +
∑

k∈s(t)∩U(d)

1/πk(t)(yk(t)− ŷk(t)). (7)

where ŷk(t) denotes the prediction of yk(t) under the assumed super population model. The predictions
{ŷk(k); k ∈ U} differ from one model specification to another, depending on the functional form and from
the choice of the auxiliary variables.
In this paper a general panel data model with random effects is considerate as working super population
model:

Yk(t) =β0,g(k)(t) + r0,k(t) +
J∑

j=1

[βj,g(k)(t) + rj,k(t)]Xj,k(t)+

+
m∑
i=1

αi,g(k)µi(t) + εk(t), k ∈ U. (8)

Here Xj,k(t), j = 1, 2, ..., J , are fixed-effects variables, β0,g(k)(t), β1,g(k)(t), ..., βJ,g(k)(t) are the un-
known fixed-effects model coefficients, which are the same in group g(k). The groups g(k) divides pop-
ulation U into G nonoverlaping groups which in some special cases can be the same as domains d,
d = 1, ..., D. The unknown random-effects models coefficients are denoted as r0,k(t), r1,k(t),..., rJ,k(t)
(rp,k(t) ∼ IID(0, λ20,g(k)(t)), g(k) = 1(k), ..., G(k), p = 0, ..., J . The model error is denoted as εk(t)

(EM (εk(t)) = 0, V ARM (εk(t)) = ν2kσ
2, ∀k ∈ U and cov(εk(t), εl(t)) = 0 when k 6= l). It should be

noticed that model error εk(t) and the random-effects model coefficients r0,k(t), r1,k(t),..., rJ,k(t) are con-
ditionally independent if values of Xj,k(t), j = 1, 2, ..., J , are known. The component

∑m
i=1 αi,g(k)µi(t)

represents a time trend. The structure of this component depends on historical auxiliary information and
is specified using exploratory analysis.
Below several special cases of this model are described:



• Example 1. Let β0,g(k)(t) = β0(t), r0,k(t) = 0, βj,g(k)(t) = βj(t), rj,k(t) = 0, j = 1, ..., J and t is
equal to one moment (let this moment is notated as W ). Then the generalized unit level model has
such form

Yk(W ) = β0(W ) +
J∑

j=1

βj(W )Xj,k(W ) + εk(W ), k ∈ U. (9)

This model is known as common model (Lehtonen et al. (2003)), because it has the same model
parameters for all domains.

• Example 2. Let β0,g(k)(t) = β
(d)
0 (t), r0,k(t) = 0, βj,g(k)(t) = βj(t), rj,k(t) = 0, j = 1, ..., J and t is

equal to one moment (let this moment is notated as W ). Then the generalized unit level model has
such form

Yk(W ) = β
(d)
0 (W ) +

J∑
j=1

βj(W )Xj,k(W ) + εk(W ), k ∈ U. (10)

This model is known as model with domain-intercept (Lehtonen et al. (2003)), because it has the
same slopes but separate intercepts for all domains.

• Example 3. Let β0,g(k)(t) = β0,g(k), r0,k(t) = 0, βj,g(k)(t) = βj,g(k) rj,k(t) = 0, j = 1, ..., J . Then the
generalized unit level model has such form

Yk(t) = β0,g(k) +
J∑

j=1

βj,g(k)Xj,k(t) + εk(t), k ∈ U. (11)

This model is fixed effect panel data model. Here models coefficients β0,g(k), β1,g(k), ..., βJ,g(k) do
not depend on time which means they are the same for the all periods of time. Such model is very
useful in practice since it enables one to find model coefficients just using data from the past. The
current data might be use just for prediction.

• Example 4. Let β0,g(k)(t) = β0(t), r0,k(t) = r0,g(k)(t), βj,g(k)(t) = βj(t), rj,k(t) = 0, j = 1, ..., J and t
is equal to one moment (let this moment is notated as W ). Then the generalized unit level model
has such form

Yk(W ) = β0(W ) + r0,g(k)(W ) +
J∑

j=1

βj(W )Xj,k(W ) + εk(W ), k ∈ U. (12)

This model is known as mixed model with random-intercept, because it has the same fixed param-
eters for all domains. The random effect is defined at the group level.

• Example 5. Let β0,g(k)(t) = β
(d)
0 , r0,k(t) = r0,g(k), βj,g(k)(t) = β

(d)
j , rj,k(t) = 0, j = 1, ..., J . Then the

generalized unit level model has such form

Yk(t) = β
(d)
0 + r0,g(k) +

J∑
j=1

β
(d)
j Xj,k(t) + εk(t), k ∈ U. (13)

It is assumed that the model coefficients β
(d)
0 , β

(d)
j , j = 1, ..., J, and the random effects r0,g(k) do not

depend on time (they are the same during the different time periods).

• Example 6. Let β0,g(k)(t) = β
(d)
0 , r0,k(t) = r0,g(k), βj,g(k)(t) = β

(d)
j , rj,k(t) = 0, j = 1, ..., J . Then the

generalized unit level model has such form

Yk(t) = β
(d)
0 + r0,g(k) + a

(d)
0 t+ a′(d)α(t) +

J∑
j=1

β
(d)
j xj,k(t) + εk(t), k ∈ U. (14)

This is a panel data model with a linear trend and a seasonal component, a(d)′α(t), a(d) ∈ R3.



6 Simulation and Conclusions

For the simulation experiment, a real population from Statistics Lithuania is used. Enterprisers which
are responsible for education are taken as the finite population. Information about these enterprisers is
taken 20 times (each quarter from 2005 till 2009). The average number of enterprises in each quarter is
750 (Number of population).
The study variable yk(t) is the income of an enterprise k and the auxiliary variables are the number of
employers x1,k(t), tax of value added (VAT) x2,kt and various indicators (specification of enterprise (5
indicators), size of enterprise (3 indicators), region (6 indicators)) xj,k , j = 3, ..., 15.
The total income in a domain in each quarter in 2008 and 2009 is chosen as the parameter of interest
(T + l, T = 12, l = 1, ..., 8). The domain is chosen as counties (there are 10 counties in Lithuania) and
specification of enterpriser (5 specifications). So, in this research the study variables are elements of a
time series with 8 elements and the total number of domains of interest is 120. The number of enterprises
in each domain varies from 6 to over than 300.
The comparison of results of 1000 simulations using different models and auxiliary information in both
stages (sample selection and estimation) showed that the impact of the model is larger for the small
domains than for the large domains. Also results showed that the use of the panel type model in sample
selection and estimation stages improves the accuracy of the estimate. More results and conclusions will
be presented during presentation.
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