
Inclusion probabilities for successive sampling

Tomas Rudys1

1Statistics Lithuania, e-mail: tomas.rudys@gmail.com

Abstract

We give a short overview of calculation of first and second-order inclusion probabilities for successive
sampling design. We compare the successive sampling first and second-order inclusion probabilities
with already known numerical approximation results for Pareto πps and Conditional Poisson sampling
designs. Pareto πps and successive sampling was introduced by Rosén and belongs to a class of
sampling designs called order sampling with fixed distribution shape. At first an order sampling is
introduced. We also give the examples of calculation of first and second-order inclusion probabilities
for the mentioned above different sampling designs.
Keywords: Order sampling, successive sampling, first and second-order inclusion probabilities, numer-
ical integration.

1 Introduction

Rosén (Rosén, 1996) studied and introduced a class of sampling designs called order sampling designs,
which are executed as follows. Independent random variables, called ordering variables, are associated
with the units in the population. A sample of size n is generated by first realizing the ordering variables,
and then letting the units with the n smallest ordering variable values constitute the sample. Rosén also
defined order sampling designs with fixed distribution shape: uniform, exponential, Pareto, successive.
Author also derived the exact formulas for calculation of inclusion probabilities (Rosén, 1998) for these
sampling designs.
Krapavickaitė (Krapavickaitė, 2012a) showed that Lithuanian Labour Force survey has successive sam-
pling design and analysed the quality implementation actions for Lithuanian Labour Force Survey. Kra-
pavickaitė also analysed order sampling designs and gave formulas for calculation of first and second-order
inclusion probabilities for successive sampling (Krapavickaitė, 2012b).
Conditional Poisson and Pareto πps sampling designs were analysed and compared by Aires (1999) where
the algorithms to find exact inclusion probabilities were derived. Author showed that it is feasible to
calculate first and second-order inclusion probabilities for both sampling designs and program routines
provide good numerical precision.
We compute first and second-order inclusion probabilities for successive sampling and compare them with
first and second-order inclusion probabilities of Conditional Poisson and Pareto sampling designs. The
successive sampling design was not studied very properly, maybe because it belongs to the same class of
order sampling designs with fixed distribution shape as Pareto and Rosén showed that Pareto sampling
design is optimal in the class of these sampling designs.

2 Order sampling

Consider a population U = {1, 2, ..., N}. For each unit i in the population is associated an independent
random variable Qi, called ranking variable, and a probability distribution function Fi, [0,∞), called order
distribution, with density fi, i = 1, 2, ..., N .



Order sampling from population U with sample size n, n < N , and order distributions F1, F2, ..., FN
is carried as follows. Independent ranking variables Q1, Q2, ..., QN with distributions F1, F2, ..., FN are
realized. The units with the n smallest Q-values constitute the sample.
Let H(t) be a probability distribution function with density h(t) = H ′(t), 0 ≤ t < ∞, and θ =
(θ1, θ2, ..., θN ) are given real positive numbers – intensities. Together H(t) and intensities θ denote the
distribution functions Fi, i = 1, ..., N .
An order sampling design, Fi, i = 1, ..., N , is said to have fixed order distribution shape H(t) with inten-
sities θ, if following two equivalent conditions are met:

1. The ranking variables Q1, Q2, ..., QN are of type Qi = Zi/θi, i = 1, ..., N , where Z1, Z2, ..., ZN are
independent, identically distributed (iid) random variables with common distribution H(t).

2. The order distributions are Fi(t) = H(θit), with density fi(t) = θih(θit), 0 ≤ t <∞, i = 1, ..., N .

Denote λ1, λ2, ..., λN as target inclusion probabilities for a, maybe approximate, πps sampling design
with fixed sample size. Simply λ1, λ2, ..., λN are given real numbers which satisfy: 0 < λi < 1, i =
1, ..., N,

∑N
i=1 λi = n. It is shown by Rosén that using the order sampling design with fixed distribution

shape, inclusion probabilities πi can be approximately equal to given target inclusion probabilities λi, i =
1, ..., N .

3 First-order inclusion probabilities

Aires showed that first-order inclusion probabilities for different order sampling designs can be calculated
using Lemma 2.
Lemma 2 (Aires, 1999, p. 461). Consider a sequence Q1, Q2, ... of independent random variables with dis-
tribution functions F1, F2, .... Let QN(n) be the n-th order statistic among Q1, Q2, ..., QN with distribution

function FNn . Then FNn (t), N = 1, 2, ..., n = 1, ..., N , satisfy recursive equation:

FNn (t) = FN−1n (t) + FN (t)
(
FN−1n−1 (t)− FN−1n (t)

)
, (1)

where FN0 (t) = 1, for all N and t > 0.
In the case of order sampling procedure, the probability of element N belonging to the sample s is:

πN = P (N ∈ s) = P (QN−1(n) > QN ) =

∫ ∞
0

(
1− FN−1n (t)

)
fN (t)dt. (2)

The inclusion probability of any other unit i is derived similarly, from the corresponding formula for the
rearranged sequence Q1, Q2, ..., Qi−1, Qi+1, ...,
QN , Qi instead.

3.1 The successive sampling case

Consider an order sampling design with fixed distribution shape. For successive sampling design the order
distribution function can be expressed as Fi(t) = H(θit) = 1− e−θit, θi > 0 for i = 1, ..., N . The densities
then become fi(t) = F ′i (t) = (1 − e−θit)′ = θie

−θit. Parallel to this θ parametrization an alternative
set or parameters which are more directly coupled to the inclusion probabilities was used (Aires, 1999):
λi = Fi(1) = 1 − e−θi , i = 1, ..., N . This is motivated by the fact that λi approximates the inclusion
probabilities in case

∑
U λi = n. Let π̃i denote the inclusion probabilities as functions of λ. Since the

intensities, for successive sampling are θi = H−1(λi) = −ln(1 − λi), then the probability of element N
belonging to the sample s is:

πN = −ln(1− λN )

∫ ∞
0

(
1− FN−1n (t)

)
(1− λN )tdt. (3)



The exact inclusion probabilities are computed according to Lemma 2, by numerical approximations with
a computer program developed with statistical package R. The input of this program is a vector of given
target inclusion probabilities λ = (λ1, λ2, ..., λN ). At first we compute FNn using the recursion in Lemma 2.
For numerical integration we use adaptive Simpson′s and Monte-Carlo algorithms. The preprogrammed
function for adaptive Simpson′s rule for numerical integration in statistical package R were used.
Example 1. The vector of target inclusion probabilities λ = (0.1, 0.2, 0.3, 0.5, 0.9) is given. We compute
first-order inclusion probabilities π̃i using successive sampling design. The population size N = 5 and
sample size n = 2 elements. The control sum is

∑N
i=1 π̃i = 1.999999, see Table 1.

3.2 The Pareto πps sampling case

Consider an order sampling design and suppose that Fi(t) = H(θit) = θit/(1 + θit) is the standart Pareto
distribution function with parameter θi > 0 for i = 1, ..., N . Then the densities are fi(t) = θi/(1 + θit)

2.
Since θi = H−1(λi) = λi/(1− λi), then the probability of element N belonging to the sample s is:

πN = λN/(1− λN )

∫ ∞
0

(
1− FN−1n (t)

) 1

(1 + λN (t− 1))2
dt. (4)

Example 2. We compute first-order inclusion probabilities for Pareto πps sampling design for the same
target inclusion probabilities vector given in the example 1, with population size N = 5 and sample size
n = 2 elements. The control sum is

∑N
i=1 π̃i = 1.999999, see Table 1.

3.3 Conditional Poisson sampling case

Poisson sampling is a method for choosing a sample s of random size |s|, from a finite population U
consisting of N elements. Each element i in the population has predetermined probability pi of being
included in the sample. A Poisson sample may be realised by using N independent Bernoulli trials
to determine whether the element under consideration is to be included in the sample or not. Any
experiment that results other that n out of the N elements being selected is rejected. One performs
sequentially independent experiments until one of the experiments results in n out of N elements being
selected.
First-order inclusion probabilities for conditional Poisson sampling can be calculated using Lemma 1
(Aires, 1999, p. 459).
Lemma 1. Consider a sequence of probabilities p1, p2, ... and let An(N) be the subset of all samples of
size n among {1, ..., N} for n < N . Then the quantities

SNn (p1, ..., pN ) =
∑

s∈An(N)

∏
i∈s

pi
∏
j /∈s

(1− pj)

with N = 0, 1, 2, ... and n = 0, ..., N , may be calculated recursively by

SNn (p1, ..., pN ) = pNS
N−1
n−1 (p1, ..., pN−1) + (1− pN )SN−1n (p1, ..., pN−1)

for n = 1, ..., N − 1 using the observations that SN0 = (1− p1)(1− p2)...(1− pN ) and SNN = p1p2...pN . The
inclusion probability π̃i of any unt i, i = 1, ..., N , can be written as:

π̃i =
piS

N−1
n−1 (p1, ..., pi−1, pi+1, ..., pN )

SNn (p1, ..., pN )
. (5)

The first-order inclusion probabilities for conditional Poisson sampling design are calculated by a computer
program developed with statistical package R. At first SNn are calculated using the recursion mentioned
above. The input for the program is any vector of unconditional Bernoulli probabilities p = (p1, p2, ..., pN ).
As a result program returns conditional inclusion probabilities (π̃1, π̃2, ..., π̃N ).
Example 3. The vector of unconditional Bernoulli probabilities p = (0.1, 0.2,
0.3, 0.5, 0.9) is given. We compute first-order conditional inclusion probabilities π̃i, having population size
N = 5 and sample size n = 2 elements. Notice that

∑N
i=1 pi =

∑N
i=1 π̃i = 2, see Table 1.



Table 1: First-order inclusion probabilities for different sampling designs

λ/p π̃i

Successive Conditional Poisson Pareto πps

0.1 0.087999779247 0.069470260223 0.094559623047
0.2 0.184249333826 0.154275092936 0.189740430046
0.3 0.290362518450 0.259990706319 0.289828419746
0.5 0.540796307599 0.573187732342 0.517952730787
0.9 0.896591938179 0.943076208178 0.907918436717

sum: 2.0 1.999999877303 2.000000000000 1.9999996403442

4 Second-order inclusion probabilities

Consider an order sampling design with population size N and sample size of n units. Then the bivariate
inclusion probability of the units N − 1, N is given by:

πN−1,N = P (N − 1 ∈ s,N ∈ s) = P (QN−2(n−1) > max(QN−1, QN )) = (6)

=

∫ ∞
0

(
1− FN−2n−1 (t)

)
fmax(QN−1,QN )(t)dt.

Here

fmax(QN−1,QN )(t) = F ′max(QN−1,QN )(t) = (FN−1(t)FN (t))′ =

= F ′N−1(t)FN (t) + FN−1(t)F
′
N (t).

The inclusion probability of an arbitrary pair of units i < j may be determined by consideration of
rearranged sequence Q1, Q2, ..., Qi−1, Qi+1, ..., Qj−1,
Qj+1, ..., QN , Qi, Qj .

4.1 The successive sampling case

For calculation of second-order inclusion probabilities for successive sampling design we have the same
order distribution functions and intensities notations as for the first-order inclusion probabilities. Then
second-order inclusion probability for units i < j can be expressed as follows:

πi,j =

∫ ∞
0

(
1− FN−2n−1 (t)

)
fmax(Qi,Qj)(t)dt, (7)

where fmax(Qi,Qj)(t) = θie
−θit(1− e−θjt) + (1− e−θit)θje−θjt.

Example 4. We compute second-order inclusion probabilities π̃i,j for successive sampling design for the
given target inclusion probabilities vector λ = (0.1, 0.2,
0.3, 0.5, 0.9), where population size N = 5 and sample size n = 2 elements. The results are shown in
Table 2. The control sum is

∑N−1
i=1

∑N
j=1 π̃i,j = 1.

4.2 The Pareto πps sampling case

Order distribution functions and intensities for calculation of second-order inclusion probabilities for
Pareto sampling are the same as for the first-order ones. In this case second-order inclusion probability
for units i < j can be calculated using the equation 7. We give just the expression of the density function:

fmax(Qi,Qj)(t) =
θi

(1 + θit)2

(
1− 1

(1 + θjt)

)
+

θj
(1 + θjt)2

(
1− 1

(1 + θit)

)
.



Table 2: Second-order inclusion probabilities for successive sampling design

i j
1 2 3 4 5

1 0.0036335 0.0059265 0.0121894 0.0662504
2 0.0127577 0.0262163 0.1416418
3 0.0426846 0.2289937
4 0.4597060

Example 5. We compute second-order inclusion probabilities for Pareto πps sampling design for the same
target inclusion probabilities vector given in the example 4, with population size N = 5 and sample size
n = 2 elements. The control sum is

∑N−1
i=1

∑N
j=1 π̃i,j = 1, see Table 3.

Table 3: Second-order inclusion probabilities for Pareto πps sampling design

i j
1 2 3 4 5

1 0.0033026 0.0053607 0.0112222 0.0746742
2 0.0112852 0.0234384 0.1517143
3 0.0374723 0.2357103
4 0.4458199

4.3 Conditional Poisson sampling case

The second-order inclusion probability of units i, j to be included in the sample s, i 6= j, can be derived
similarly as in the univariate case, using Lemma 1 (Aires, 1999, p. 459) and by consideration of the
equations,

π̃i,j =
pipjS

N−2
n−2 (p1, ..., pi−1, pi+1, ..., pj−1, pj+1, ..., pN )

SNn (p1, ..., pN )
. (8)

Second-order inclusion probabilities are calculated in the same way as first-order inclusion probabilities.
The program was developed with statistical package R. The input for this program is a vector of un-
conditional Bernoulli probabilities p = (p1, p2, ..., pN ). As a result program gives computed second-order
inclusion probabilities π̃i,j .
Example 6. For given vector p = (0.1, 0.2, 0.3, 0.5, 0.9), second-order inclusion probabilities π̃i,j are calcu-
lated, where population size N = 5 and sample size n = 2 elements. The results are shown in Table 4.
Notice that control sum is

∑
i<j π̃i,j = n(n− 1)/2 = 1.

Table 4: Second-order inclusion probabilities for conditional Poisson sampling design

i j
1 2 3 4 5

1 0.0016264 0.0027881 0.0065056 0.0585502
2 0.0062732 0.0146375 0.1317379
3 0.0250929 0.2258364
4 0.5269517



5 Conclusions

Simulation results show that inclusion probabilities for all sampling designs are close, but they do not
coincide. We can see that using order sampling design with fixed order distribution shape the exact
inclusion probabilities were approximated quite good. The differences can be explained by approximate
numerical integration used for calculation of the inclusion probabilities, also by actual differences of
those probabilities. The second-order inclusion probabilities differ more than the first-order inclusion
probabilities. An approximate integration methods used for calculation of the inclusion probabilities
requires long computer execution time .
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