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Abstract

The calibration approach is suggested in the literature for estimation in sample surveys under
non-response given access to suitable auxiliary information. However, missing values in auxiliary in-
formation come up as a thorny but realistic problem. This paper is connected with how imputation of
auxiliary information based on different levels of register information affects the calibration estimator.
Results show that the level of register information used for deriving imputation models only marginally
affects the calibration estimator bias. The results are obtained under different patterns of non-response
in the target variable and missing values of the auxiliary variable.
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1 Introduction

The calibration approach is by Särndal & Lundström (2005) suggested for estimation in sample surveys
with non-response. Calibration implies computation of weights for sampled elements in the response
set such that applied to known auxiliary variables they replicate known population totals. There are
several papers addressing the calibration technique for estimation in sample surveys. Deville & Särndal
(1992) proposed linear form for the calibration weighting with multivariate auxiliary information. Kott
(2006) considered calibration estimation to correct for coverage errors and unit non-response (Quasi-
randomization). Montanari (2005) discussed calibration estimator in a neural network mode. Särndal &
Lundström (2008) discussed non-response bias for choosing auxiliary information.

In these papers, it is usually assumed that auxiliary variables are fully recorded without missing values.
For example, Särndal & Lundström (2005) proposed star vector and moon vector, which are defined as
information available at the population level and the sample level, respectively. Unfortunately, in reality,
auxiliary information is not that ideal. Missing values occur in all types of data, also in auxiliary variables
records.

Missing values can be replaced by imputations and then treated as any other auxiliary variable.
However, this depends on the way the imputations are derived. The cases when missing values are
replace by a constant, zero say, and the case when imputations are derived from a regression model
estimated on response set information are different. This paper addresses the issue of the effects of how
imputations of auxiliary variables are derived. Using simulation, the bias of the calibration estimator is
studied under regression imputation where the regression imputation model is estimated using register,
sample, and response set information respectively.

2 Calibration Estimator

2.1 Definition

Consider a finite population with N elements U=1, 2, . . . , N , in which yk is a target variable and xk =
(x1k, x2k, . . . , xJk)

′ is a full-recorded auxiliary vector. A probability sample s with sample size n is selected
from U by a probability sampling design p(s). When non-response occurs, only a subset of the sample
r ∈ s is answered, where the size of response set is denoted as nr. To describe the random response



mechanism, q(r|s) is denoted as the conditional response distribution, and the probability of a response
of element k given its selection to a sample is denoted θk = Pr(k ∈ r|k ∈ s).

To estimate the population total Y =
∑

U yk, the calibration estimator Ŷw =
∑

r wkyk uses calibrated
weights wk subject to the constraint

∑
r wkxk = X. The weights wk can be defined in different ways

obeying the constraint. Särndal & Lundström (2005) defined the weights using the system wk = dkvk,
vk = 1 + λrxk, and λr = (X −

∑
r dkxk)

′(
∑

r dkxkx
′
k)
−1.

2.2 Auxiliary information

Särndal & Lundström (2005) defined three different cases depending on the accessible auxiliary informa-
tion. In this paper, we will look into two of them. The two cases are

InfoU. Information is available at the level of the population U such that

• the population total
∑

U x?k is known;

• for every k ∈ r, the value of x?k is known.

InfoS. Information is available at the level of the sample s such that

• for every k ∈ s, the value of x◦k is known but
∑

U x◦k is unknown.

Consider the case that missing values occur in auxiliary variable xk as well. Imputation is a frequently-
used method to allocate artificial values for the missing items. Little & Rubin (1987) regarded imputation
as a general and flexible method for handling missing-data problem but with pitfall, such as substantial
bias, and summarized different sorts of imputation methods to construct the substitutes.

With imputed values, auxiliary variable will be denoted as

x•k =

{
xk for k ∈ rx
xk(δ̂) for k ∈ U − rx

(1)

here rx is the subset of the population U where xk is available, and xk(δ̂) is the imputed value based on
the parameter δ̂ which is derived from the register information.

Consider InfoU with xk = x?k = (1, x•k)
′ with the information input X•k = (N,

∑
U x•k), where the

calibration estimator for target variable y becomes

Ŷw = Nȳr + (
∑
U

x•k −Nx̄r) ∗Br

where

Br =

∑
r dk(x•k − x̄r)(yk − ȳr)∑

r dk(x•k − x̄r)2
(2)

ȳr =

∑
r dkyk∑
r dk

(3)

x̄r =

∑
r dkx•k∑
r dk

(4)

Consider InfoS with xk = x◦k = (1, x•k)
′ with the information input X•k = (N̂ ,

∑
s dkx•k), where

N̂ =
∑

s dk. The calibration estimator for target variable y then becomes

Ŷw = N̂ ȳr + (
∑
s

dkx•k − N̂ x̄r) ∗Br

where Br, ȳr and x̄r are the same as in equation (2), (3) and (4).



2.3 Nearbias

A central issue regarding the effects of nonresponse is estimation bias. Consider an auxiliary vector xk
satisfying µ′x•k = 1 for all k. Then Särndal & Lundström (2005) shows

Nearbias(Ŷw) = (
∑
U

x•k)
′(BU ;θ −BU ) (5)

in which

BU ;θ = (
∑
U

θkx•kx
′
•k)
−1(

∑
U

θkx•kyk)

and

BU = (
∑
U

x•kx
′
•k)
−1(

∑
U

x•kyk)

Consider the case that missing value occurs in auxiliary variable xk, xk becomes x•k as described in
equation (1). If all the missing items in xk is artificially imputed as 0, i.e., x•k = 0 when k ∈ U − rx, the
formula of nearbias will be the same as equation (5) with no extra components.

If we consider another case in which regression imputation is utilized for missing values in xk, i.e., xk
is replaced by x•k and x•k = xk(δ̂) when k ∈ U − rx, where δ̂ is the estimate of coefficient derived from
the register system. The formula of nearbias in this case will stay the same as equation (5).

According to accessible register information at hand, the estimate of δ̂ could possibly derived from
population level, response level or sample level. When δ̂ is obtained from register information only,
equation (5) will keep valid through all the cases.

In next section, a simulation study will be conducted on how bias of calibration estimator changes
when different imputation for missing values in xk is used. Missing values in xk will be imputed by linear
regression model xk = u′kδ + εk and δ is estimated based on sample level or response level.

3 Simulation Study

The effect of imputation on the calibration estimator bias is here studied by simulation. To simulate a
population with 100000 units, the following procedures are performed.

1. xk is generated from a standard normal distribution N(0,1).

2. error term ξ1 and ξ2 are independently generated from N(0,1) distribution.

3. uk is generated by uk = α+ β ∗ xk + ρ1 ∗ ξ1k.

4. yk is generated by yk = τ + η ∗ xk + ρ2 ∗ ξ2k.

The coefficients β, η, ρ1 and ρ2 are used to control the coefficient of determination R2 between y and
x, and x and u respectively.

The bias of the calibration estimator Bias(Ŷw) = E(Ŷw) − Y will be studied in four different cases
with different patterns of the occurance of non-response in yk and missing values of xk.

Case I non-response in yk occurs with constant probability such that θk = θ for all k ∈ U , and missing
vaule of xk occurs with constant probability such that Pr(xk is missing in register system)=ϑk=ϑ
for all k ∈ U .

Case II missing vaule of xk occurs with constant probability such that ϑk=ϑ for all k ∈ U , but non-
response in yk occurs with varying probability, i.e., θk changes for k ∈ U .

Case III non-response in yk occurs with constant probability such that θk = θ for all k ∈ U , but missing
vaule of xk occurs with varying probability, i.e., ϑk changes for all k ∈ U .



Case IV non-response in yk and missing value in xk both occur with varying probability, i.e., both θk
and ϑk change for all k ∈ U .

In Case II and IV above, yk is divided into three groups, with response rate

θk =


10% when y > 8

35% when y < 0

65% when 0 ≤ y ≤ 8

Similarly, in Case III and IV, xk is divided into ten groups, with response rate

ϑk =



45% when x < −1.28

50% when − 1.28 ≤ x < −0.84

55% when − 0.84 ≤ x < −0.52

60% when − 0.52 ≤ x < −0.25

65% when − 0.25 ≤ x < 0

75% when 0 ≤ x < 0.25

80% when 0.25 ≤ x < 0.52

85% when 0.52 ≤ x < 0.84

90% when 0.84 ≤ x < 1.28

95% when x ≥ 1.28

The regression imputation will be utilized to make up for the missing values in auxiliary variable xk.
In this stage, imputation will be proceeded based on the linear model

xk = u′kδ + εk = δ1 + δ2uk + εk

where u is a full-recorded variable from the register system. The estimator of δ is δ̂ = (
∑

A uku
′
k)
−1(

∑
A ukxk),

where A is the set of items used for performing the linear regression. The following three kinds of collection
of objects (i.e., A) are considered.

Imputation 1 A = Ux, where Ux is the whole population of variable x, which means imputation regres-
sion will be run based on all the available values of xk in the population.

Imputation 2 A = rx = Ux ∩ r, where imputation regression will be executed based on the available
values of xk in the population where yk is responsed.

Imputation 3 A = sx = Ux ∩ s, where imputation regression will be performed based on the available
values of xk in the sample.

Replicating the simulation for 3000 times, the expectation of the calibration estimator is estimated
by E(Ŷw) =

∑3000
i=1 Ŷwi/3000 and the bias is estimated with Bias(Ŷw) = E(Ŷw) − Y . As a benchmark,

estimates of the bias of the calibration estimator with full-recorded auxiliary variable xk is shown in Table
1. The bias in the case II/IV is notably larger than in case I/III.

Bias estimates for the calibration estimator with missing values of the auxiliary variable are reported
in tables 2 - 5. In Table 2, the case with R2(y, x) = R2(x, u) = 50% is considered. From the table it is seen
that the bias estimates are small for cases I and III, while they are large in cases II and IV. A surprising
observation is that bias estimates are in large unaffected by the level of information used for estimation
of the regression model used for imputation. Also, bias is in large unaffected by the level of information
used in the calibration estimator. However, compared to the beachmark in Table 1, the biases in tables
2 - 5 are larger in general.



In the following tables, bias estimates are reported for different cases of strengths in the relation
between y and x, and between x and u. Compared with Table 2, Table 3 reports results where R2(y, x)
is increased to 0.8. It is observed that the results in the two tables are comparable. There are only minor
changes in the bias estimates.

In Table 4, bias estimates in the case when R2(x, u) is increased to 0.8, compared with Table 2, is
reported. Again, the results are comparable with those of Table 1 with only small difference in bias
estimates. Finally, Table 5 reports results when R2(x, u) is decreased to 0.26 and it is seen that the
reported estimates are comparable with those of tables 2 - 4.

Table 6 reports a case when the auxiliary variable xk is chi-square distributed instead of normal as in
tables 1 - 5. The levels of the bias estimates are different (see Table 6) but the general pattern observed
in tables 2 - 5 is also observed here. Biases are negligible in cases I and III, while modest in cases II and
IV. The level of the bias is not dependent of the level of information used in the calibration, and finally,
the bias is largely unaffected by the level of information used for the estimation of the regression relation
used as imputation model.

4 Conclusion and Discussion

It is shown in all the cases of the simulation study that the bias of calibration estimator differs slightly
between InfoU case and InofS case, which is also stated in Särndal & Lundström (2005). The bias
estimates in Case I/III are always close to 0, implying that the calibration estimator is nearly unbiased
when the response rate θk is constant and not related to the value of yk. The bias estimates in Case
II/IV, however, are affected by θk being related to the value of yk.

The simulation study also shows that imputation of auxiliary information with coefficient δ̂ derived
from different levels of information, i.e., register, sample and response set give negligible differences on bias
estimates. This implies that when missing values in auxiliary information need to be imputed, the level
of information used for imputation has no essential effect on the bias of the calibration estimator. The
results are here derived by simulation and it is desirable to derive more formal and general results. One
suggestion for further studies is to consider the asymptotic properties of Yw, where asymptotic limits f(δ̂)
are utilized. It is expected that bias expressions similar to equation (5) can be derived using asymptotics.
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A Table: simulation result

Table 1: Bias in Normal case when R2(y, x)=R2(x, u)=50%

Case I Case II

InfoU 139.28 -11884.92
InfoS 350.78 -11616.12

Note: xk is full-recorded.∑
U yk=500915.62

Table 2: Bias in Normal case when R2(y, x)=R2(x, u)=50%

Case I Case II Case III Case IV

InfoU
Imputation 1 -100.82 -13307.32 167.32 -11509.29
Imputation 2 -105.22 -13345.59 137.73 -11275.61
Imputation 3 -102.62 -13343.70 128.98 -11547.56

InfoS
Imputation 1 76.68 -13074.37 455.78 -11223.00
Imputation 2 84.08 -13091.86 385.32 -10943.10
Imputation 3 19.18 -13078.22 457.31 -11271.17

Note:
∑

U yk=500915.62

Table 3: Bias in Normal case when R2(y, x)=80% and R2(x, u)=50%

Case I Case II Case III Case IV

InfoU
Imputation 1 -170.51 -13714.31 97.41 -10606.63
Imputation 2 -179.55 -13556.80 67.67 -9100.94
Imputation 3 -158.29 -13693.62 82.72 -10590.23

InfoS
Imputation 1 77.15 -13466.74 378.16 -10386.30
Imputation 2 37.92 -13290.21 326.84 -8877.21
Imputation 3 49.62 -13504.88 332.76 -10401.46

Note:
∑

U yk=500967.42



Table 4: Bias in Normal Case when R2(y, x)=50% and R2(x, u)=80%

Case I Case II Case III Case IV

InfoU
Imputation 1 16.13 -12462.12 109.29 -11716.29
Imputation 2 18.85 -12490.73 100.82 -11596.08
Imputation 3 -7.76 -12504.85 65.81 -11755.04

InfoS
Imputation 1 275.90 -12216.29 382.02 -11438.96
Imputation 2 193.84 -12231.55 296.71 -11291.59
Imputation 3 246.78 -12257.83 338.56 -11483.31

Note:
∑

U yk=500915.62

Table 5: Bias in Normal Case when R2(y, x)=50% and R2(x, u)=26%

Case I Case II Case III Case IV

InfoU
Imputation 1 -173.81 -13913.94 231.92 -11403.91
Imputation 2 -177.67 -13947.07 196.40 -11148.80
Imputation 3 -183.65 -13953.12 200.92 -11432.49

InfoS
Imputation 1 77.05 -13698.89 522.33 -11111.83
Imputation 2 0.48 -13705.81 443.75 -10801.25
Imputation 3 41.84 -13743.01 478.42 -11165.83

Note:
∑

U yk=500915.62

Table 6: Bias in chi-square case whenR2(y, x)=R2(x, u)=85%

Case I Case II Case III Case IV

InfoU
Imputation 1 -1575 -21848 -1408 -22164
Imputation 2 -1649 -21534 -1484 -20986
Imputation 3 -1668 -21898 -1527 -22184

InfoS
Imputation 1 -1171 -21368 -1012 -21743
Imputation 2 -1078 -20908 -920 -20406
Imputation 3 -1027 -21325 -925 -21668

Note:
∑

U yk=1099883.12


