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Let the finite population U be U

divided into D non-overlapping ‘%
domains Uy, q»

deD={1,2,..D}.

» We are interested in some domain parameters, for example
domain totals, t9 = >_icu, i with y; being the value of study
variable for object /.

» It is natural that domain totals sum up to the population total,
YRt =t =Yy,
d=1t" = U= 2cu i

Relationships between population parameters do not necessarily
hold for the estimates in a samplel!
=> inconsistency of estimators
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> Aggregated from registers population statistics and obtained from
the sampling survey domain estimates. Domain estimates from the
survey do not sum up to the totals available from the registers.

» The multi-survey situation: some study variables are common in two
or more surveys. Domain estimates from one survey do not sum up
to the estimates of larger domains (or population totals) from
another survey.

» Domains themselves and the population total may be estimated by
conceptually different estimators in the same survey. As a result, the
domain totals do not sum up to the population total, or to the
relevant larger domains.

The described inconsistency is annoying from the statistics users
viewpoint.
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» It is known that any auxiliary information incorporated into
estimators may increase precision of these estimators

» Known relationships between population parameters is a kind
of the auxiliary information.

» |f one could use this information in the estimators, one were
able to make estimators more accurate and force them to
satisfy desired restrictions.

Our aim is the elaboration and study of consistent domain
estimators that are more accurate than the initial estimators and
satisfy restrictions hold for the population parameters.
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Consistency of domain estimators has been considered for some
time.

This work is based on earlier results,

» the general restriction (GR) estimator (Knottnerus 2003),

» the GR estimator elaborated for domains (Séstra 2007, Séstra
Jja Traat 2009).

These methods produce optimal GR estimators, but they use
unbiased or nearly unbiased initial estimators.

We generalize the approach by allowing biased initial estimators.
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» All estimators and their properties are elaborated in general
and can be applied for any sampling design.

» Since domain estimation is a multivariate problem, then the
matrix technique is used; there are vectors of estimators under
consider. The accuracy of these vectors are measured with the
MSE matrices.

» The design based approach is used.

» Sample sizes in domains are assumed to be not too small, i.e.
small area estimation methods are not considered here.
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Notations

Let @ = (61, ...,0x)" be the parameter vector under study that
satisfies linear restrictions:

RO=0, (1)

where R is an r x k matrix of rank r.

» For the domain’s case,

R=(1,1,..,1,-1): 1x(D+1)and 0 = (£, t, ... 1), t,),

where D domain totals are t}‘,’ = Zud yi, d=1,2,...,D, and
the population total is t, = >, yi.
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The GR estimator for the unbiased initial estimators
0 = (61, ...,0)" (Knottnerus, 2003) that satisfies (1) has the form

Ocr = (1- KR)§ (2)

with
Cov(Ogr) = (I — KR)V, (3)

where
K = VR'(RVR')"! (4)

and V = Cov(#) such that RVR’ can be inverted.

The estimator O¢r is unbiased and has the minimum variance
property.
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» Knottnerus' GR estimator is not optimal with biased initial
estimators.

> Three new GR estimators handling bias b = E(0) — 0 are
proposed.

» All of them satisfy the restriction equation R@¢r = 0.



Estimator GR1

Proposition 2.2

The estimator
Ocr1 = (I-KR)(®-b),  (5)

with K = VR/(RVR')~1 is unbiased for 6. Its variance is
Cov(fgr1) = (I— KR)V,  (6)

and it is the optimal estimator among all linear estimators in
(6 — b) that satisfy restriction equation (1).




Estimator GR2

Proposition 2.3

The estimator, satisfying restrictions (1), is
Ocr2 = (I - K*R)8, (7)
where K* = MR/(RMR’)~! and M = MISE(8). The bias of the
06R2 is
b(Ogr2) = (I — K*R)b, (8)
and the mean square error matrix is

MSE(Bgr2) = (I — K*R)M.  (9)

Furthermore, MSE(Qcra) < M (10)
in the sense of Léwner ordering.
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Proposition 2.3

The estimator
Ocrs = (I — K*R)(0 — b) (11)

with K* = MR/(RMR’)~1 satisfies restrictions (1) and is unbiased
for 8. It's MSE is

MSE(f¢rs) = (I — K*R)V(I — K*R)".  (12)

Furthermore,

MSE(Bgr3) < M. (13)
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Ocr1 = (I— KR)(8 — b),
Ocro = (I — K*R)0,
Ocr3 = (I— K*R)(0 — b)

Proposition 2.4

The mean square error matrices of the restriction estimators 0 ¢y,
0GRr2, OGr3 and the initial estimator @ can be ordered (in the sense

of Léwner ordering) as following:

MSE(Agr1) < MSE(86rs) < MSE(Bgro) < MSE(8). (14)

W
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» GR estimators are general:
» applicable for any initial estimator-vector 0,
» applicable for any restriction matrix R (not only summation),
» applicable for any sampling design.



Simulation study

Population:

Study variables:

Auxiliary information:

i

Data of the healthcare personnel of Estonia,
N = 21764

Hourly wage (continuous)
Physician (binary)

ID of healthcare institution

Age

Sex

Education level (1..5)

Domain indicator d (d = 1,2,3,4)
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The population is divided into 4 domains by the type of the
healthcare institution:

Table: Population and domain sizes

Domain  no. of laborers %
1 10863 49.9
2 6742 31.0
3 3139 14.4
4 1020 4.7

Population 21764 100




Data description

» Two sample designs were applied for the population frame, SI
and MN.
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» Two sample designs were applied for the population frame, SI
and MN.

» For both designs 5000 independent samples were drawn with
n = 400.

» There is no any empty domain sample through simulations.
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The restriction matrix R and the restriction equation for the vector
of true totals 6 = (01, 62, 03,04,0p)', are:
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The restriction matrix R and the restriction equation for the vector
of true totals 6 = (01, 02, 03,04,60p), are:

R=(1,1,1,1,—-1),Ré = 0.
The initial estimator vector:

A

0
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Estimator|Sample Domain d
d=1| d =2[ d = 3]d = 4|Population|RO =
1 ]2450.3/1428.3| 884.1|178.3 4706.2|234.9
Initial 2 2291.8(1878.7(1003.3|191.0 5160.7|204.1
3 |2777.1/1460.7| 917.8|192.5 5019.6(328.6
1 |2523.2|1459.8| 544.0|151.2 4678.3| 0.0
GR1 2 |2382.3|1917.8| 662.2|163.7 5126.0 0.0
3 [2796.2|1469.0| 580.7|166.4 5012.3| 0.0
1 2425.6(1417.6| 707.4|165.0 4715.7| 0.0
GR2 2 |2270.2|1869.4| 849.8|179.5 5168.9| 0.0
3 |2742.5|1445.8| 670.7|173.9 5032.9| 0.0
1 2463.7|1434.1| 643.6|159.6 4701.0f 0.0
GR3 2 |2308.4|1885.9| 785.9|174.1 5154.3| 0.0
3 |2780.6|1462.3| 606.8| 168.6 5018.2| 0.0
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Estimator|Sample Domain d
d =1] d = 2|d = 3]d = 4|Population|RO =
1 ]2666.0{1676.8| 952.5|178.1 4883.7|589.7
Initial 2 2419.3|1423.5/931.1| 169.9 4725.0(218.8
3 2674.4|1241.9|908.7| 164.7 4604.8|384.8
1 |2533.9]1613.3|622.7| 154.0 4923.8| 0.0
GR1 2 2502.3|1463.4| 591.2| 142.9 4699.8| 0.0
3 12661.1/1235.5|573.3| 139.0 4608.8| 0.0
1 ]2600.0{1645.1|513.6| 145.0 4903.7 0.0
GR2 2 |2394.8|1411.7|768.3| 157.6 47324 0.0
3 2631.3(1221.1|622.4|143.1 46179| 0.0
1 2640.5|1664.6| 446.9| 139.5 4891.4| 0.0
GR3 2 2435.3/1431.2| 701.5| 152.1 4720.1| 0.0
3  |2671.8|1240.6|555.6| 137.5 4605.6| 0.0
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MSEs, Sl case

Domain 1, continuous varisble, 10%8 Domain 1,binary varisble
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MSEs, MN case

Domain 1, cantinuous warisble, $10%5 Do main 1, binary variable
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» Three GR estimators satisfying linear restrictions, generalized
to allow biased initial estimators, were proposed.

» The mean square error (MSE) and the bias expressions for the
GR estimators were derived and studied.

» The ordering of the GR estimators was established, they all
were more accurate than the initial estimator.
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THANK YOU!



