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Outline

e Introduction, notation, definitions
e Estimation of total
e Estimation of ratio

e Estimation of covariance ?
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Introduction, notation

Finite population:
U={u,u,...,un} ={1,2,....N}.

Survey variables:

y :{y17y27”'7yN}
z Ha,z,.- v

Parameters of interest:

N 1 <N
1= Zivzl Vs Hy = %Zk:l Yo Hz = § D k=1 Zhs

Cov(y,z) = 57 Yt 0k — ) (zk — p2)
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Horvitz-Thompson estimator

@ZZ%ZZC&W

kEs kes

m =P(k €s),k=1,...,N —inclusion probability of the element
kel,

dy = 1/m, k € U — design weights.
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The problem

Known auxiliary variables:

FORY)

g e ey

uy —  ag = (a,(cl),...,a,(cj))’,k: 1,...,N

=0 a = (X0 a", . 2 )
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Calibrated estimator of the total 7, (Deville and S&rndal
(1992))

Definition 1. Estimator

/t\w = Zwkyk

kes

is called calibrated if
a) it estimates the known total t, without error:

t, = Zwkak =ta,
kEs

b) the distance between the weights d; and weights wy is
minimal according to the loss function

L(w,d) = L(wg,dy, k € s).

Aleksandras Plikusas Design based and model based calibration



Model calibration approach

Model calibration for the estimation of totals is proposed by Wu
and Sitter (2001).

Suppose that the relationship between y; and known auxiliary a; can
be described by the linear regression model (or by some more
general model)

yi = Bo + pia; + gy

and

i = Bo + brai
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Model calibration approach

The model calibrated estimator of the total
i§MC) _ Z WwMC) e
kes

is defined under the conditions

ZWMC)A Zyk

kes
MC) —dy)?

LZ —  min

kes quk
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Empirical comparison

Empirical coefficient of variation

Population No 1 (Wu & Sitter)

Estimator a b a& b
HT 0.041554
DC 0.038395 0.035283 0.033674
MC 0.038509 0.035805 0.033904

Simulation is made by A. Chaustov.
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Empirical comparison

Empirical coefficient of variation

Population No 2 (Lithuanian Enterprises)

Estimator a b a& b
HT 0.066378
DC 0.044411 0.075138 0.043740
MC 0.048526  0.085014 0.049900
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Empirical comparison

Empirical coefficient of variation

Population No 3 (Lithuanian Enterprises)

Estimator a b a& b
HT 0.086103
DC 0.053379 0.062127 0.048058
McC 0.056351 0.060125 0.046883
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The problem

How to construct calibrated estimators when estimating some
other finite population parameters?

For example:
ratio of two totals

finite population covariance
variance of the estimator of total (quadratic form)
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Some possible solutions

1. In case a parameter is a function of the finite population
totals, estimate totals using calibrated estimators and plug-in.

2. "Calibrate" functions of totals. Many possibilities.
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Example. Calibrated estimators of the ratio with one
weighting system, Plikusas (2001)

Known auxiliary variables:

for study variable x : aj,ay,...,ay

for study variable y : b1, by, ... by

Totals ¢, = Z arand 1, = Z by are known.
k= k=1

The values of study variables are known only for sampled
population elements.
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Example. Calibrated estimators of the ratio with one
weighting system, Plikusas (2001), Krapavickaté and
Plikusas (2005)

Consider calibrated estimators of the ratio of the following form

I’é(cal) o Zkes Wik Yk
1 - )
" > kes WkZk

here the weights wy
a) minimize the loss function

(g — dk
L=
,; drqk
b) satisfy the calibration equation
D kes WAk _ Soh Ak
Skes Wkbk 331 bi

Aleksandras Plikusas Design based and model based calibration



Calibrated estimators of the ratio with two weighting
systems (Plikusas, 2003)

Consider estimators having the following shape:

(1
Blcal) _ Zkes Wk ))’k

Rw2
> kes Wk Zk
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Calibrated estimators of the ratio with two weighting
systems (Plikusas, 2003)

Consider estimators having the following shape:

(1
k(cal) _ Zkes Wk ))’k

w2
D kes Wk Zk
here the weights w,El) and w,(c )
a) minimize the loss function
(2 2
() — dp)? (v —di)
L*=a«a + (1 -« , O<a<l1
% diqi ( )g diq
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Calibrated estimators of the ratio with two weighting
systems (Plikusas, 2003)

Consider estimators having the following shape:

(1
k(cal) _ Zkes Wk ))’k

w2
D kes Wk Zk
here the weights w,El) and w,(c )
a) minimize the loss function
(2 2
() — dp)? (v —di)
L'=a) —f——+(1—-« — O<ax<l
% diqi ( )g diq

b) satisfy the calibration equation

1
Sieswh @ _ Y a
Yhes Wbk Lo b
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Model calibration approach for the ratio

We extend the method to the estimation of ratio.
Suppose that the relationship between y; and a; (z; and b;) can

be described by the linear regression models

vi = PBo+ Bia;i + ey, zi = +bi + ez,
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Define



Define

here the weights w"')

a) minimize the Ioss function

L=y M A

kes
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Define

MC
ﬁ(cal) Zkes W1(< )yk
MC

MC
ZkES ( )
here the weights w(MC)
a) minimize the Ioss function
I — Z Me) dk) .
dek

kes
b) satisfy the calibration equation

McC .

>_kes Wi w5 DYy
. NN o0

2kes W/EMC) G k=1

here 3, and z; are fitted values for y, and z.
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Comments

1. Simulation results show that the calibrated estimator with two
weighting systems may be more efficient in most cases.

2. Model calibrated estimator is of the same efficiency if the
relation of study variables and auxiliaries is strong.

3. If working model is not correct the design based calibration
is more efficient. The same is true for the estimation of totals
(or means).

4. Calibrated weights have explicit expressions
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Estimation of the finite population covariance

Finite population covariance

N

Cov(y,z) 71 3 (yk—Zyk><Zk—;IZZk>

k=1
Standard estimator

Cov (y,z Z (yk - — deyk) (Zk - — dezk).

kEA kEA
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Calibrated estimators of the covariance

Auxiliary variables « and » with the population values
ai,az,...,an
b1,by, ..., by

Covariance between a and b: Cov(a, b)
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Calibration equations with one system of weights

1)
1 I —~
Ni Zwk(ak - Maw)(bk - wa) = Cov(a, b)7 (1)
T kes
v = gy i = 3y S i
Haw = = Widk, bw = 77 WDk
N kes N kes
1)
1
N1 > wilax = pa) (b — pp) = Cov(a,b), (2)
kes
1 Y 1 Y
fa =D ar, p=—> bk
N N =
1)

N N
Y owiar =Y a, Y wibi =Y b 3)
k=1 k=1

kes kes
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Calibrated estimators with several weighting systems

Estimators of type

Covmw y,2) = 7Zw ( Yk — = Zwlz)yl) (zk - wa, Zz)

lEs les
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Calibrated estimators with several weighting systems

Case 1. -
Covpy(a,b) = Cov(a,b). (4)

Case 2. The weights w,(cl), w,(f), w,(f) are defined from the
equations:

1

= > @ = o) (b — 1p) = Cov(a b), (5)
kEs
0 < G, _ v
Zwk ak—Zak, Zwk bk—zbk- (6)
kEs k=1 kes k=1

Case 3.
w,El) from (9).

w,(f) and w,(f) are derived from (6)
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Calibrated estimators with several weighting systems

Case 4. Estimator

COVmw Vi) = 7 ZW (yk By Zwlz)yl) <Zk - ZWI Zl)-
[Es les
(7)

w,(f) are defined from (5),
w,(f) from

N N
Z w,(cz)ak = Z ay, Z w,iz)bk = Z by. (8)
k=1

kes k=1 kes
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Calibrated estimators with several weighting systems

Case 5.
w,((l) from (9)
w,(f) from (10)

1

N_1 Z wi(ax — faw) (b — fibw) = Cov(a, b), 9)
T kes
2 N 2 N
Z w,(c )ak = Zak, z:w,(c )bk = Zbk' (10)
kes k=1 kes k=1
Case 6.
w,El) from (5),
w? (9).
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Estimator

RB Var x 10713

RRMSE

cv

p(y,a) =0.81 p(z,b) =0.90 p(y,b) = 0.63 p(z,a) = 0.60

— (non)
Coviy, *(,2)
—~ (tot)
COV]W (y7 Z)
—~ (lin)

COVIW ()/» Z)

-0.0495
-0.0796
-0.006 5
-0.0019
-0.0049
-0.0510
-0.004 6
-0.0505

-0.0050
-0.0735

2.7493
5.3133
2.2129
2.1657
2.1194
2.8040
2.1211
2.7920

2.1078
10.386 1

0.0935
0.1360
0.0715
0.0704
0.0698
0.0950
0.0698
0.0946

0.0696
0.1708

0.0835
0.1198
0.0716
0.0705
0.0700
0.0844
0.0700
0.0842

0.0698
0.1665
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Estimator

RB Var x 10713

RRMSE

cv

p(y,a) =0.21 p(z,b) =0.90 p(y,b) = 0.63 p(z,a) = 0.15

— (non)
Coviy, *(,2)
—~ (tot)
COV]W (y7 Z)
—~ (lin)

COVIW ()/» Z)

-0.0635
-0.074 3
-0.0858
-0.0792
-0.0814
-0.064 3
-0.0784
-0.0619

-0.0805
-0.0738

6.7417
52115
9.4940
9.8254
9.3788
6.7424
9.204 1
6.6470

9.4446
9.7766

0.1395
0.1321
0.1706
0.1696
0.1676
0.1399
0.1650
0.1380

0.1677
0.1668

0.1327
0.1180
0.1613
0.1629
0.1595
0.1328
0.1575
0.1315

0.1599
0.1615
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Estimator RB Var x 10713 RRMSE cv

p(y,a) =0.23 p(z,b) =0.31 p(y,b) =0.19 p(z,a) = 0.16

o™ (v,2) -0.0627 12.1333 0.1781 0.1778
o (v,2) -0.0703 10.291 1 0.1688 0.1651
Covi™ (v, 2) -0.0767 102916 014716 0.1663
Con't) (v, 2) 00764 102927 04715  0.1662
Cov (v, 2) -0.0763 102829 04714  0.1661
Covi (v, 2) -0.0666 114251  0.1749 0.1733
oDy, 2) 00757 103007 04712  0.1662
Covo (v, 2) -0.0660 114427 01748 0.1733
Covp(y.2) 00722 103695 04702  0.1661
Cov(y, ) 00730  10.2602  0.1698  0.1654
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Some comments

e Calibrated estimators of the covariance are more efficient
provided at least one highly correlated auxiliary variable is
available. Model calibrated estimators are efficient in case
model is correct.

e All estimators are of the same quality in case of low
correlated auxiliary variables.

e Linearized variance estimators are very approximate.
Bootstrap variance estimator seems to be more precise.

e There are many different possibilities to construct the
calibrated estimators of the covariance.

[ ]
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