Workshop of Baltic-Nordic-Ukrainian Network on Survey Statistics 2012

Valmiera, 25 August 2012

INCLUSION PROBABILITIES FOR SUCCESSIVE SAMPLING

Tomas Rudys, Statistics Lithuania

INCLUSION PROBABILITIES FOR SUCCESSIVE SAMPLING

OUTLINE

- Research problem
- Class of order sampling designs
- Successive sampling design
- Expressions for first and second-order inclusion probabilities
- Simulation study results
- Conclusions

Research problem

- Statistics Lithuania recently had a project on "IMPLEMENTATION OF QUALITY IMPROVEMENT ACTIONS FOR THE LABOUR FORCE SURVEY". It was shown that Lithuanian LFS has a successive sampling design.
- On part of the project was to compare inclusion probabilities for successive sampling design and conditional Poisson sampling design.
- The comparison were needed because inclusion probabilities for successive sampling design is difficult to calculate.
- The idea was to analyse the use of inclusion probabilities of conditional Poisson sampling design instead of successive sampling design in the estimation stage.

In this presentation

- The expressions for calculation of first and second-order inclusion probabilities for successive sampling design will be presented.
- The results of simulation study on comparison of inclusion probabilities for both sampling deigns will be shown.

Class of order sampling designs (Rosén, 1996). Let $F_1, F_2, ..., F_N$ be absolutely continuous order distribution functions increasing on $[0,\infty)$. Sampling is carried as follows:

- Independently random variables $Q_1, Q_2, ..., Q_N$ with distributions $F_1, F_2, ..., F_N$ are given.
- Distribution functions $F_1, F_2, ..., F_N$ are associated with the population elements $U = \{1, 2, ..., N\}$ correspondingly.
- *Q*₁, *Q*₂, ..., *Q*_N are realized, and population elements with *n* smallest *Q* values constitute the sample.

According to Rosén, successive sampling design is an order sampling design, and its order distribution functions are

$$F_i(t) = 1 - e^{-\theta_i t}, i = 1, 2, ..., N,$$

their density functions are $f_i(t) = F'_i(t) = \theta_i e^{-\theta_i t}$. Here θ_i are given real positive numbers called – intensities. For successive sampling design the intensities are

$$\theta_i = -\ln(1 - \lambda_i).$$

Here λ_i is denoted as target inclusion probability. Simply $\lambda_i, i = 1, ..., N$ are given real numbers which satisfy: $0 < \lambda_i < 1, \sum_{i=1}^N \lambda_i = n$. It is shown by Rosén that using the order sampling design with fixed distribution shape, inclusion probabilities π_i are approximately equal to given target inclusion probabilities $\lambda_i, i = 1, ..., N$. Aires (1999) presented expressions for the first and second-order inclusion probabilities of order sampling design. In the case of order sampling design, the probability of element *N* to belong to the sample is:

$$\pi_N = \int_0^\infty \left(1 - F_n^{N-1}(t) \right) f_N(t) dt.$$
 (1)

Here F_n^N is a distribution function of *n*-th order statistic of independent random variables $Q_1, Q_2, ..., Q_N$, satisfying the recursive equation

$$F_n^N(t) = F_n^{N-1}(t) + F_N(t) \left(F_{n-1}^{N-1}(t) - F_n^{N-1}(t) \right),$$

and $F_0^N(t) = 1$, for all positive integers *N* and t > 0. Index *N* may be associated with any population element, and its inclusion probability may be calculated by (1).

Then for the successive sampling design the first-order inclusion probability can be expressed as follows

$$\pi_N = -\ln(1-\lambda_N) \int_0^\infty \left(1 - F_n^{N-1}(t)\right) \left(1 - \lambda_N\right)^t dt.$$

Joint inclusion probabilities for any population elements *i*, *j* in the *n*-size order sample are expressed by:

$$\pi_{i,j} = \int_0^\infty \left(1 - F_{n-1}^{N-2}(t) \right) f_{max(Q_i,Q_j)}(t) dt.$$

In the case of successive sampling, the density function $f_{max(Q_i,Q_j)}(t)$ has a form

$$f_{max(Q_i,Q_j)}(t) = \theta_i e^{-\theta_i t} (1 - e^{-\theta_j t}) + (1 - e^{-\theta_i t}) \theta_j e^{-\theta_j t}.$$

Conditional Poisson sampling design. The elements of the population *U* are selected independently of each other with probabilities $p_i, i \in U$. The sample size is random, and if it is not equal to *n*, then the sample is rejected. Sample selection is repeated until the *n*-size sample is obtained.

The inclusion probability π_i of any element $i \in U$, i = 1, ..., N, can be written as (Aires, 1999):

$$\pi_{i} = \frac{p_{i}S_{n-1}^{N-1}(p_{1}, ..., p_{i-1}, p_{i+1}, ..., p_{N})}{S_{n}^{N}(p_{1}, ..., p_{N})}$$

The quantities

$$S_n^N(p_1,...,p_N) = \sum_{s \in A_n(N)} \prod_{i \in s} p_i \prod_{j \notin s} (1-p_j)$$

with N = 0, 1, 2, ..., n = 0, ..., N, and $A_n(N)$ -a set of all samples of size n may be calculated recursively by

$$S_n^N(p_1, ..., p_N) = p_N S_{n-1}^{N-1}(p_1, ..., p_{N-1}) + (1 - p_N) S_n^{N-1}(p_1, ..., p_{N-1})$$

for $n = 1, ..., N - 1$ with $S_0^N = (1 - p_1)(1 - p_2)...(1 - p_N)$ and
 $S_N^N = p_1 p_2 ... p_N.$

The second-order inclusion probability of units *i*, *j* to be included in the conditional Poisson sample *s*, $i \neq j$ is:

$$\pi_{i,j} = \frac{p_i p_j S_{n-2}^{N-2}(p_1, \dots, p_{i-1}, p_{i+1}, \dots, p_{j-1}, p_{j+1}, \dots, p_N)}{S_n^N(p_1, \dots, p_N)}.$$

Simulation results

Let us suppose N = 5 size population with element target inclusion probabilities $\lambda = (\lambda_1, \lambda_2, ..., \lambda_N) = (0.1, 0.2, 0.3, 0.5, 0.9)$ is available. We calculate estimates $\hat{\pi}_i$ of the first-order inclusion probabilities π_i for the sample size n = 2 elements for both sampling designs. Notice that $\sum_{i=1}^N \lambda_i = \sum_{i=1}^N \pi_i = 2$. Results are shown in the table.

Table: First-order inclusion probabilities for successive and conditionalPoisson sampling designs

i	λ	π		
		Successive	Conditional Poisson	
1	0.1	0.087999779247	0.069470260223	
2	0.2	0.184249333826	0.154275092936	
3	0.3	0.290362518450	0.259990706319	
4	0.5	0.540796307599	0.573187732342	
5	0.9	0.896591938179	0.943076208178	
sum:	2.0	1.999999877303	2.00000000000	

Simulation results

We also compute estimates $\hat{\pi}_{i,j}$ of the second order inclusion probabilities $\pi_{i,j}$ for a successive sampling design.

The target inclusion probability vector $\lambda = (0.1, 0.2, 0.3, 0.5, 0.9)$ is given (the same as for first-order inclusion probabilities).

Population size N = 5 and sample size n = 2 elements.

The control sum is $\sum_{i,j \in U, i < j} \pi_{i,j} = n(n-1)/2 = 1$.

Simulation results

Second-order inclusion probabilities for successive sampling design

i	j						
	1	2	3	4	5		
1		0.0036335	0.0059265	0.0121894	0.0662504		
2			0.0127577	0.0262163	0.1416418		
3				0.0426846	0.2289937		
4					0.4597060		

Second-order inclusion probabilities for conditional Poisson sampling design

i	j						
	1	2	3	4	5		
1		0.0016264	0.0027881	0.0065056	0.0585502		
2			0.0062732	0.0146375	0.1317379		
3				0.0250929	0.2258364		
4					0.5269517		

Conclusions

- Simulation results show that inclusion probabilities for both sampling designs are close, but they do not coincide.
- The differences are explained by actual differences of those sampling designs and by approximate numerical integration used to calculate first and second-order inclusion probabilities.

Remark.

Because of recursive expressions under the integrals, the calculation of inclusion probabilities require long computer execution time.

Thank You.