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1. Motivating example

Imagine that the distribution of some characteristic ξ (e.g. body
length) of crabs living at a sea is studied. The investigated population
of crabs is divided into two sub-populations (components). The crabs
belonging to the first component are more salt-loving then the ones
belonging to the second component.
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Proportion in the local population depends on the mean salinity of the
water at this site. Assume that the function describing the dependence
of this proportion from the salinity is known.

We are interested in the differences in distribution of ξ for crabs
belonging to different components. But the true component to which
the crab belongs is not observed in the study, since it needs some
expensive and time consuming tests.
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Therefore our inference should be based on the proportions of
components at the sites. These proportions can be considered as
probabilities that a crab chosen at random from the local population
belongs to a given component (mixing probabilities). They can be
estimated by the mean salinity data.

To catch the crabs some traps are used and it is known that the
probabilities to be caught are different for crabs with different body
length ξ. This causes a sampling bias in the observed distribution of ξ.
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Our aim is to correct this bias and to extract the CDF of the
component of interest from the mixture.
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2. Horwitz-Thompson approach to bias correction

Assume that there is a homogeneous infinite (very large) population of
subjects O with the observed feature ξ(O) ∈ R. Denote F (x) the CDF
of ξ(O) in the entire population. A subject O can be sampled from the
population with the probability depending on ξ(O) but independently
of all other subjects. Let us denote this (inclusion) probability by

cq(t) = P{O was included to the sample |ξ(O) = t}, (1)

where q(t) is a known function, c is an unknown constant.

The values of ξ(O) for the sampled subjects produce the sample
Y = (η1, η2, . . . , ηn). ηi are i.i.d. and the their CDF F̃ (x) is the
conditional probability of the event {ξ(O) < x} given that O was
sampled.
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Then

F̃ (x) = P{ξ(O) < x | O was sampled} =

∫ x

−∞ q(t)F (dt)∫ +∞
−∞ q(t)F (dt)

. (2)

In this case the population mean ξ̄ = E ξ =
∫

xF (dx) does not equal to
the expectation of the observed values E ηj due to the sampling bias.
But ξ̄ can be estimated by the weighted sample mean with weights
reciprocal to the inclusion probabilities:

ξ̂ =
1∑n

j=1
1

q(ηj)

n∑
j=1

1
q(ηj)

ηj .

It is the usual HT-estimate which is consistent if ξ̄ exists and
q(t) > const > 0 for all t. The corresponding estimate for CDF F is

F̂HT (x) =
1∑n

j=1
1

q(ηj)

n∑
j=1

1
q(ηj)

1I{ηj < x}.
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3. Mixtures with varying concentrations (MVC)

In the MVC model we assume that the subjects can belong to one of
M sub-populations (components) <1, <2,. . . ,<M . The probability to
observe a subject from a given component depends on the conditions of
the observations and is different for different observations. Let us
denote by pi

j the probability to observe a subject from <i in the j-th
observation. The CDF of the observed feature ξ(O) of a subject O is :

Hm(x) = P{ξ(O) < x | O ∈ <m}.

So, the observed sample X consists of independent but not identically
distributed observations X = (ξ1, . . . , ξn) with CDFs

Fj(x) = P{ξj < x} =
M∑

m=1

pm
j Hm(x). (3)
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Note that the component to which an observed subject belongs is
unknown. One needs to infer on Hm only by the sample X and the set
of mixing probabilities pm

j , j = 1, . . . , n, m = 1, . . . ,M which are
known.

The CDF Hm may be estimated by a weighted empirical CDF

Ĥm(x) =
1
n

n∑
j=1

am
j 1I{ξj < x}.

Here am
j are some weights which may depend on mixing probabilities

pi
j , but not on the observations ξj .

To obtain unbiased estimates one needs the following conditions to be
satisfied:

1
n

n∑
j=1

am
j pi

j = 1I{i = m} for all i = 1, . . . ,M.
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One of appropriate choices is the minimax weighting with

am
j =

M∑
i=1

γ̄impi
j ,

where Γ̄ = (γ̄im)M
i,m=1 is the matrix inverse to Γ = ( 1

n

∑n
j=1 pi

jp
k
j )M

i,k=1.

To estimate the m-th component mean ξ̄m =
∫

xHm(dx) one may use

ξ̂m =
1
n

n∑
j=1

am
j ξj .
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4. Mixture model with sampling bias

Let us assume now that the MVC model is in force together with the
sampling bias. The considered subjects O belong to M different
components and the CDF of their feature of interest ξ(O) is Hm for the
subjects belonging to the m-th component. The proportion of the m-th
component subjects in the local population from which the j-th subject
was obtained is pm

j . These probabilities are known. The CDFs Hm are
unknown. The probability to sample the subject O from a local
population depends on ξ(O). This probability is defined by (1) with
known q and unknown c.

The problem is to estimate the components’ CDFs Hm and means
ξ̄m =

∫
xHm(dx).
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Analogously to (2) we obtain that the observed sample
Y = (η1, . . . , ηn) consists of independent observations with CDFs

F̃j(x) = P{ηj < x} =

∫ x

−∞ q(t)Fj(dx)∫ +∞
−∞ q(t)Fj(dx)

, (4)

where Fj is defined by (3): Fj(x) =
∑M

m=1 pm
j Hm(x).

From (4) we obtain

F̃j(x) =
M∑

m=1

pm
j Q̃m∑M

i=1 pi
jQ̃i

H̃m(x),

where

Q̃m =
∫ ∞
−∞

q(t)Hm(dx), H̃m(x) =
∫ x

−∞
q(t)Hm(dx)/Q̃m.

So, the sampling bias causes changes not only in the distributions of
components, but also in the mixing probabilities.
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To take in account the bias in the mixing probabilities, we need to
estimate Q̃m. Notice that

E
1

q(ηj)
=

1∑M
i=1 pi

jQ̃m

.

The least squares technique suggests the estimate Q̂ = (Q̂1, . . . , Q̂M )
for Q̃ = (Q̃1, . . . , Q̃M ) which is the minimizer of the LS functional

J(Q) =
n∑

j=1

(
1∑M

i=1 pi
jQi

− 1
q(ηj)

)2

over all Q = (Q1, . . . , QM ) with Qi > 0.
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With these estimates at hands we define the weights ãm
j for the m-th

component estimation as

ãm
j =

1
q(ηj)

M∑
k=1

γ̃km

pk
j∑M

i=1 pi
jQ̂i

,

where Γ̂Q = (γ̂km)M
k,m=1 is the matrix inverse to

Γ̃Q =

 1
n

n∑
j=1

pk
j pm

j(∑M
i=1 pi

jQ̂i

)2


M

k,m=1

.
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The resulting bias-correcting estimate for the Hm is

ĤBC
m (x) =

1
n

n∑
j=1

ãm
j 1I{ηj < x}.

The estimate for ξ̄m is

ξ̂BC
m =

1
n

n∑
j=1

ãm
j ηj .
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Theorem 1 Assume that the next conditions holds.

1)There exists c > 0 such that q(x) > c for all x ∈ R.

2)For all m = 1, . . . ,M :
∫

x2Hm(dx) < ∞.

3)There is no linear subspace L ⊂ RM with dimL < M such that
P{(p1

j , . . . , p
M
j ) ∈ L} = 1.

Then
ξ̂BC
m → ξ̄m

in probability as n →∞.
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In this theorem we consider the concentrations ~pj = (p1
j , . . . , p

M
j ) as

generated by some stochastic mechanism. So ~pj are i.i.d. random
vectors and formula (3) describes the conditional probability of
{ξj < x} given ~pj :

Fj(x) = P{ξj < x|~pj} =
M∑

j=1

pi
jHi(x).
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5. Simulation results

In our experiment we considered a two component mixture M = 2.
The distribution of the first component was N(−1, 1), the distribution
of the second one was N(1, 1).

The concentrations of the first component p1
j were simulated as random

variables, uniformly distributed on [0, 1], p2
j = 1− p1

j .

Figure 1 presents the graphs of the estimates ĤBC
m (x) for the

components CDFs by a sample with n = 1000 observations.
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(a) (b)

Figure 1: Estimates of CDF for the first (a) and second (b) component.
The true CDFs are depicted by black lines.
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The biases and variances of the estimates ξ̂BC
m for different sample sizes

n are presented in Table 1.

Table 1: Performance of the estimates for means

n ξBC
1 ξBC

2

bias Var bias Var

50 -0.0807 0.8011 -0.0851 0.3360

100 -0.0581 0.2257 -0.0589 0.1575

250 -0.0176 0.0849 -0.0271 0.0815

500 -0.045 0.0464 0.00210 0.0330

750 -0.0285 0.0421 -0.0162 0.0187

1000 -0.0052 0.0211 -0.0034 0.0118

23



References

1. Lohr, S. (2010) Sampling: Design and Analysis. Brooks/Cole.

2. Maiboroda, R. & Sugakova, O.(2012) Statistics of mixtures with
varying concentrations with application to DNA microarray data
analysis. Nonparametric statistics, 24, iss.1, 201-215.

3. Shao, J. (2003) Mathematical statistics. Shpringer.

24


