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As anounced in the program:

Lecture 1 : Interplay between survey theory and the demands
of official statistics production, a theory of science perspective

Lecture 2 : The data collection stage: Responsive design and
balancing the set of respondents

Lecture 3 : The estimation stage: Calibrated weighting for

nonresponse bias reduction and preferably without increased
variance



Lecture 1:
Interplay between survey theory and
official statistics production

Subtitle: Comments on
Survey science In the last 200 years
with an emphasis on the last 100 years
In particular on the last 60 years



My lecture received its structure
from 4 recent publications in our area

three Ph.D. theses
one important review paper



Important research
and methodological progress
IS realized in our area

Area = the geographical area
Here . Baltic-Nordic-Ukrainian

Area = our discipline :
Survey science, broadly defined



| selected
Three recent Ph.D. theses In our area

On unequal probability sampling designs
Anton Grafstrom, Umea University 2010

Estimation of domains under restrictions built upon
generalized regression and synthetic estimators

Natalja Lepik, Tartu University 2011

Paradigms in statistical inference for finite poatibns
up to the 1950’s

Vesa Kuusela, University of Helsinki 2011



Congratulations to Anton, to Natalla 9 WVesa !
And to all other sucessful recent Ph.D’s In owaa

And | wish | were a Ph.D. student again !



An important review article

Groves, R. M. and Lyberg, L. (2010)
Total survey error, past, present, future.
Public Opinion Quarterly24, 849-879



Four themes

Inference for finite populations
Unequal probability sampling
Estimation for domaindy GREG

Total survey error



Those four references

are very different
but what unites them iIs “our area” :
finite populations, survey statistics

The differences reflect
the vitality of our discipline
the different motivations of researchers in ounare

The differences lend structure to my lecture



Outline of my lecture

The historical perspective up until 1950: Kelas

The journey from the 1950’s : Modern progregh
classical roots (examples : Grafstrom, Lepik)

The reality in practice today: Groves and Ligbe

Discussion and prospects for the future, in paldr
for math/stat work



1. A historical perspective

An intellectual adventure beginning over 200 yeays

In the interest of the national authority (the kitige
state, the decision makers) or the local authority

We need to know, to find out,
about our population,
too large to collect data on everybody
(persons, or farms, or firms, or hospitals)



A historical perspective

Louis XIV , King of France, wants to know :

How many subjects do | have
iIn New France (Queébec) ?

Jean Talon's 1666 census of New France
there were 3215 people
and 538 separate families

That was not so hard - they were not many



150 years later,
It was already much more difficult :

the population of France > 30 x°10



Kuusela’'s thesis

The method of Laplace 1783;n = 30 departements
Ratio estimator

Pop. births x sample population/sample births

1802 estimate :  28.4 10°
Compare: Central Statistical Office of France:

Year 1801 : 27.3x 10°
Year 1806  29.1x 10°

p.62,64



The method of Laplace (1783) marks the beginoing
mathematical statistical inference
for finite populations

A significant step forward !

p.62,64



Kuusela discusses

Early 20th century key figures :
Kiger in Norway, Bowley in England

1934 Neyman’s foundation for design-based inference
1936 Gallup poll = quota sampling; called repreaavg:

pl76



Kuusela:

“The classical t
less completec

Classical theory

neory of survey sampling was mare o
In 1952 when Horvitz and Thompson

published a pa

per on a general theory for constigict

unbiased estimates”

“The random sampling approach was almost
universally accepted”

60 years ago already

p.6



The classical period
extensions in 1950’s, 1960’s

e The teaching flourished
 The research continued, somewhat hesitatingly
 Gave a “hard core” for the future



Teaching the classical theory

Thousands of students became familiar with
Cochran (editions 1953, 1963, 1976)

Des Ra] & Murthy & others.



Research

Theory was in a way finished, complete, in 1952.
Some said : There is nothing more to be done.
Survey sampling was seen by many
In 1960’s as “a dead field”

These observers did not see very far.
We have come a long way since 1950’s
with a “neo-classical” perspective



The hard core

One of the lasting contributions
of the classical period
gave ahard cor e for survey theory,
making it a mature math/stat science




Kuusela’s thesis
 |s devoted only to the sampling error
* the many other “errors in surveys” play no role

(not a criticism)

* has an undertone of nostalgia for the classieabd,
when surveys were simple



2. The journey from the 1950’s

After 1952, espcecially since 1970’s .
Neoclassical theory flourished

with “ a hard core”
born out of the classical theory



The hard core of a research programme, whatis it ?

We owe the termto Imre Lakatos 1922-1974

The hard core consists of theoretical assumptions that
cannot be abandoned or altered without abandoning
the programme altogether.

More modest theories, formulated in order to explal
evidence that threatens the hard core, are called
auxiliary hypotheses.




Thehard core of survey science

Postulates a finite collection of objects (units)
from which some are sampled
and a subsample is observed
with more or less measurement error

Model based methods (from the 1970’s and on) still
within the hard core



Neoclassical research traditions
since 1970’s

Unequal probability sampling designs

Forms of inference: design-based, model based etc
GREG and calibration

Small area estimation

Nonresponse treatment

Longitudinal surveys

Confidentiality

Editing



Grafstrom'’s thesis

The research tradition: Unequal probability sangplin

The mathematical base: Probability theory, prolugbil
distributions applied to finite universes

The survey background: Large units should be ssdect
with high probability




Grafstrom'’s thesis

“Wonderful opportunity to learn more about mathaoat
statistics and sampling”

The roots: Hajek (1964), posthumous book (1981
M.R. Sampford (1967)
K.R.W. Brewer 1970’s ; Brewer & Hanif (1983)

The thesis contains many references
from last 20 years:

A modern, lively discipline, with classical roots !



Lepik’s thesis

*Our study method is mathematical”
The research tradition: Auxiliary information asGiREG

The mathematical base: Advanced matrix algebra;
multivariate theory;

The survey context: Estimation, design-basedddtave
manner for sub-populations (domains) (design-based)

Oldest reference: 1976

Modern : Only 3 of 36 references are older thar0i99
only 13 older than 2000 .

A modern, lively discipline, with classical roots !




Without skilled mathematical work,
these theses would not have been produced

They are manifestations of
a mature survey sampling science



Aftermath of the classical period

Three inference theories for finite populations,
Ray Chambers (2012) Pak. J. Statist.

 The design-based
 The model assisted design-based
 The model based

“All 3 are In use In major statistical agencies”



3.  Practice today

The development of survey science
(to serve the interests of national statisticahags)
IS driven by

 The (Increasing) needs for statistics in society
* The costs of production

(It was so In the past, Is so today, and always)



Article by Groves and Lyberg (2010) :
Total Survey Error:. Past, Present, Future

o expresses “the reality of surveys”
e expresses very important concerns
but Is In striking contrast with the math/stat work
(the statistical inference aspect)
that | have reviewed




Groves and Lyberg (2010)
on Total Survey Error
e called a paradigm
e cannot be measured
e but provides a framework for our thinking

* no reference to the math/stat work in survey smen
from the 1950’s




Unlike the 3 theses mentioned,
Groves and Lyberg (2010) do not discuss
statistical inference for finite populations

The focus instead: The guality of survey results




Groves and Lyberg try to explain what they see as a
(misguided ?) overemphasis on the math/stat work

DemingSome Theory of Samplifg950) “... focuses
entirely on sampling error properties ... not sispg
. sampling was not universally accepted and hdukto
vigorously promoted at the time”

Hansen, Hurwitz & Madow (1953) devote 9 pages
out of 638 In their book to
“response and other non-sampling errors in surveys”

p.853



Bring attention instead to Issues such as :
 measurement and questionnaire

* types of nonresponse: refusal vs. non-contact
 mode effects vs. respondent effect;

« self-administered data delivery vs. interview

e Ccoverage error vs. nonresponse error

p.853



Groves & Lyberg say :

“The Isolation of survey statisticians and methodyl
from the mainstream of social statistics has ...
retarded the importation of model based approaches
to many of the error components in the total survey
error format.”

Examples of such models:

structural equation model building, hierarchicaklr
models, latent class models

p.853



Article by Robert Groves (1987) titled:

Survey research Is a methodology without a unifying
theory

“A theory of surveys would unite social science
concepts with the statistical properties of survey
estimates” (l.e., accuracy, bias and vaean

We do not have such a theory (of inference)



4. Discussion

Themes :

Survey science In a broad perspective

The future of excellent math/stat work in survexesce ?
Is the mathematical orientation “misguided” ?

IS survey science “mature” ?



Discussion

Do we as mathematical statisticians
not see the forest for only trees ?



There Is an old saying about the forest and thestre

“We cannot see the forest for only trees”



The forest and the trees

John Polanyi, distinguished Canadian scientist
Nobel laureate chemistry 1986;
eminent philosopher-chemist

In his address to the 1998 M.D. graduates,
Fac. of Medicine, Univ. of Toronto,

Polanyi says:



Polanyi :

“Nature deals In forests, scientists seldom even In

trees. We decom
atoms and molecu
delving for hidden

nose what we see, to the level of
es ... But in the process of
patterns, the large patternechll

a forest can be lost to view. Then the strength of

science, which lies in its sharp but narrow focus,
becomes Its weakness.”



Polanyi :

“Since there is no right solution to this problem of
balance between viewing the whole and the part,
one finds different “styles” in science ... Though
there Is no right style, there Is a wrong one which
IS to abandon the problem of balance and neglect
the whole In favour of its details”

The underlining Is mine.



Questions arising

The problem of balance between the whole and s pa
Do math/stat survey scientists fail to strike tiadahce
the total survey picture versus its minute defails

Do we devote too much myopic attention to minor
details ?

My answer is botha YES anda NO



Survey science

| need here to make a distinction

 Math/stat survey scientists

e Other stakeholders and contributors to surveynsee
(sociologists, economists, political scientists)

At this workshop, perhaps in majority the firstegary.



Survey science
In the sense of “inference for finite populations”
(as for example in Kuusela, Grafstrom, Lepik)

e IS mathematical

* the best of it has (over the years) had tremendopact
on practice

We should be proud of that.

lllustration: IASS jubilee commemorative volume 200
(Landmark papers in Survey Statistics):
19 papers, almost all mathematical



Historically, some math/stat contributions haverbee
extremely important in the advancement of survey
science.

Beginning with Neyman & Hansen & others,
1930°s to 1950’s

Continuing with the impact of models (from 1970’s)
Model assisted, Model based, and so on



As a result of his/her training,
a natural instinct of math/stat survey scientist :

Set (probability) bounds on the error in statistas
finite populations

For this, there I1s a toolbox: The methods of diaaé
Inference

Now today, given the enormous complexity of modern
surveys and the multitude of errors,

what Is the future of math/stat work in survey
sclence?



Yet the message of Groves & Lyberg is very impdrtan
They minimize the recent math/stat contributions.

They do not say so explicitly, but it is impliedath
much work of math/stat character Is just
“little trees or bushes in the big forest”

My impression : they feel that the quest for baéanc
between the whole (of survey science) and its parts
IS not well served by a focus on math/stat “details




Yes, | believe there Is, Iin survey science,
a certain conflict

between the view of the whole and the view on its
parts.

How strike the balance ?

| have no satisfactory answer — perhaps you have



A personal view (and hope)

| would like survey theory to progress,
to make decisive leaps forward,

with math/stat means.

Because the math/stat resolution
of an important practical problem has
a tremendous “convincing power”
This is In the nature of mathematical language.

But this Is not easy, In view of the complexitynobdern
surveys.



Conclusion : OQuestions we need to ask

 What isthe valueof math/stat work in survey science ?

 What isthe futureof math/stat work in survey science ?



What isthe valueof math/stat work in survey science ?

Many important math/stat contributions to survey
science have been realized

* |n the classical period (before 1952)
* |In the neo-classical period (after 1952)



What isthe futureof math/stat work in survey science ?

 |In defining our research, we should strive for the
desirable balance between the whole picture ofesurv
science and its parts.

e We must ask ourselves : Is the direction
of our work sufficiently “in balance” ?



Choosing directions (themes, problems) for onessaech

A young PhD student relies heavily on the advibe (
preferences) of the thesis director (professor)

« Established senior researchers (professors)
can always justify :
“I am continuing my research”

(because it was well received In the past)



Revolutionary progress by math/stat (in the maiher
Neyman and others) still not excluded
(but It was easier then)

| wish all of us good luck for the next 60 years !
In 2072, almost 300 years since Laplace !



This ends my Lecture 1.

Thank you for your attention !
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Survey nonresponse :
statisticians have a role to play

(a) at the data collection stage
(b) at the estimation stage.

The tasks (a) and (b) interact.

In these two lectures we examine these tasks
and their interaction.



Lecture 2 : The data collection stage:
Responsive design; balancing the set of respondents

Lecture 3 : The estimation stage: Calibrated
welighting for nonresponse bias reduction and
preferably without increased variance



| ecture 2 :

The data collection stage : Responsive desigh,
balancing the set of respondents

Most surveys today experience high nonresponse -
In some cases >50% -

an Impediment to survey quality,
In establishment surveys

as In surveys on individuals and households.



Let's face it: Nonresponse Is here to stay.

While keeping nonresponse rates high,
we should integrate nonresponse
— and other non-sampling errors for that matter -
Into theory; not view it as a “disease’,
treated by “repairs” of various kinds.




Starting points:

Thestudy variablegy-variables) are affected by non-
random nonresponse (even conditional on x-vector).

Estimates more or less biased.
Bias can never be eliminated completely.
Ignorable nonresponse (MAR) does not exist.

Auxiliary variables(x-variables) crucially important.
These are variables known at least for all unithien
selected probability sample, respondents as welbas
respondents.

“Multivariate auxiliary” Is a starting point



Background of this lecture

The ideas ofResponsive design

European developments:
Statistics Netherlands (RISQ project)
Statistics Sweden
survey environments
rich in auxiliary information



Aspects of Responsive design Data collection
monitored with the aid of indicators of

balanceand/orrepresentativity{of the respondents),
and

distance(between respondents and non-respondents).

These are computed on selected auxiliary variables.



e Data collection: Evolving over time; the orpdina
data collection may be modified by interventions;
focus onbalanced response at the end

« Estimation stage : Focus adjusting for bias
still affecting the estimates,
despite balancing at the data collection stage.

Both activities require auxiliary variables
Challenge: make the most of such variables



Outline of Lecture 2

1. Probability sampling background
2. Balanced response; measuring imbalance
3. Monitoring the data collection; responsiveiges



1. Probability sampling background

Probability samples from U={1,...,k,..., N
Inclusion prob of k : 7 =Prkes)
known for all units k € U

= design weightd, = 1/,

Target of estimation : Y =" yi



The (unrealistic) case of

Sampling and full response

Full response :
Study variabley,, observed allk € S

sampleS < populationU

Unbiased estimation possible, e.qg. by HT estimator

Yur =D OkYk  with dy =1/ 7,



Sampling and full response

Population U —__

V4

Probability sample S



A well known concept balanced sample
sample mean = population mean

for measurable variables



Full response

and known population auxiliary total
ZU XKk = N Xy
Brings a regression adjustment to HT estimator :
YoreG=YHT + N(Xy —Xg)'b
where Xs = ) dixc / ) dy

If X=Xy : balancedample

and the adjustment term 1s ZERO



An extensive literature exists on balanced sampling
for full response

R. Royall and collaborators in the 1970’s

(model based approaches)

The cube method (Deville and Tille, 2006)
combines probablility sampling with balancing

At the sampling stage, realize with the cube method
what one would otherwise have realized later

at the estimation stage by GREG estimation



For full response, balanced sampling brings the
regression adjustment term in the GREG to zero.

Similarly, we shall see for nonresponse:

balancing the response set

brings zero nonresponse adjustment



More realistically here Nonresponse

U o> s o r
population> sample> response set

The response set Is the subset of samplg

for which yy Is observed
Response rate (weighted)

P=Y dy/> dy

(Some call I the sample; not so here)



Our situation :

Population U —

/ \

Prob. sampleS Response sefl

I = the set wherey|, observed



U o> s o r
population> sample> response set

Desirable, unrealized estimator (would be unbiased)
V=S d¢— vy with dy=1/7
- Yk k k k

0, Is the unknown responseprob. of unit k

Had 6) been known, we could stop here



Said differently : Under nonresponse,
the theory for unbiased estimation fails because

observation probability is unknown
and < _inclusion probability

Pr(observeyk) =M X E)k
n, = Pr(k e s) knowninclusionproh

0y =Pr(ker|s) unknownresponsg@roh

But 8, unknown: Wework withoutit



Desirable, unrealized estimator (would be unbiased)

~ 1 .
Y:Zrdk@yk with dy =1/ 7y

The two-phase weighting that would
make this estimator unbiased does not
work because the weightl/0, is unknown

We mustwork without knowing 6,



The response rate P=> dc/>  dy
IS an often computed survey characteristic
But gets more attention than it deserves ;

In itself, insufficient to portray the harm
done by non-response



Given today’s high nonresponse,

the quality of the response data set is what counts ,
much more so than its relative size (the respoaisg.r

Quality features:
the composition, the balance, the representativity

those are the aspects of the response
that we must measure



2. Balanced response ; measuring imbalance

Objectives In this section: To discuss

* the concept obalanced response set
e« a measure aimbalance
 thedistance

(between respondents and non-respondents)



Well known concept balanced sample

The concept ofbalanced response, less well known,
IS essential here



Why examinebalance andimbalance
of the response ?

Comparative perspectives:

In a repeated survey:. Is this year’s response
better balanced than last year’s ?

Multinational survey: Do participating countrieiffer
In the degree of balance they get ?




Dynamic perspective in one & the same survey:.

During data collection,

can we Influence the balance,
Improve it by interventions ?



In the dynamic perspective: Response set
grows larger as more and more units respond

There Is anultimate response sef |,

one that we have In a sense created
through judicious intervention

We want it to be well balanced
For this we need tools & concepts



One such concept :
Balance
refers toeguality of means
for important measured variables



Imbalance , Balance , Distance

are concepts built on auxiliary variables

Auxiliary vector value X,

known forK € S, perhaps fork ¢ U

(But study variablg, recorded fork e I' only)
rc s < U



Think multivariate !

]:th aux. variable
continuous or categorical

XKk = (X]k,...,Xjk,...,XJk)’

recorded at least folkk € S, maybe forallk € U

Dimension J can be considerable
maybe 50 or more



Auxiliary vector

Xp = (X]k’---’xjk’---’XJk)' available for k e s

One of the simplest examples is multivariate :
Classification vector

Xk =(0,...1...0)
where the only “1” indicates class membership oa®Xk.

J=4x6 size-by-industry classes

Alternatively, “side by side”: size + industry Hhoover
J = 4+6+5-2



Auxiliary vector Xk = (X]k,---,Xjk ,---,XJk)’

|s often composed from several classifications
arranged “side-by-side”
(rather than crossed, to avoid small or zero cells)



Auxiliary variables and vectors

XKk = (X]k,...,Xjk ,...,XJk)’
assumed available fok € s

Often, several classifications “side-by-side” :
No classificéion (x, =1): J=1
Oneclassificéion :J =1+ (J, -1
Two classificéions: J=1+(J1-1)+(Jo-1)

Threeclassificdions: J =1+ (J; -1+ (Jo -1 + (I3 -1
J may be 50 or more .



Auxiliary vector Xk = (X]k,---,Xjk ,---,XJk)’

One category excluded in each classification
INn order to preserve matrix invertibility.



Criterion Hs ; order of selection

Step | Variable entering H3><1O3 RDF
O | (trivial) 0 10.6
1 |EDUCATION LEVEL (3) 186 6.0
2 |POSTAL CODE CLUSTER (6) 250 5.6
3 | COUNTRY OF BIRTH (2) 281 5.5
4 | INCOME CLASS (3) 298 2.4
5 |AGE CLASS (4) 354 3.1
6 |SEX(2) 364 2.8
7 |URBAN DWELLER (2) 374 2.6
8 |INDEBTEDNESS (3) 381 2.3

RDF = relative deviation from unbiased est.




Criterion H4 ; order of selection

Step | Variable entering Hq x 103 | RDF
O | (trivial) 0 10.6
1 |INCOME CLASS (3) 76 4.5
2 |EDUCATION LEVEL (3) 107 2.0
3 | HAVE CHILDREN (2) 114 1.4
4 |URBAN DWELLER (2) 118 1.1
5 |SEX (2) 123 0.7
6 | MARITAL STATUS (2) 125 0.5
7 |DAYS UNEMPLOYED (3) 121 0.9
8 |MONTHS SICKNESS (3) 120 1.0

RDF =reative deviation from unbiased est.




Order of selection, an example

Step Variable
O | (none)
1 |EDUCATION LEVEL (3)
2 |POSTAL CODE CLUSTER (6)
3 | COUNTRY OF BIRTH (2)
4 | INCOME CLASS (3)
5 |AGE CLASS (4)
6 |SEX(2)
7 |URBAN DWELLER (2)
8 |INDEBTEDNESS (3)




Now we confront respondents with full sample

For jth variable x , compute

Dj = >/<jr - >\<js
respondent full sample
mean mean

Asavector: D= (Dl,...,Dj ey D7)



Confronting respondents with full sample

Mean difference vector, dimensiod > 1

Xy :Zr dek/Zr de Xg = stkxk /stk

Sample design weighteddy, = 1/7,



Balanced response sdt .
Respondent®n average equal to

full sample, with respect to the chosx[g

—— ——
responding allsampled

Intuitively desirable, but hard to realize complgte
Goal fordata collection try to get high balance
Estimation stageadjustment still needed,
but part of the job done



Why seek balance ?
Because balance on anvector strongly related
to the study variabley

= even the simple expansion estimator
IS close to unbiased

Show It as an exercise !



Normally D =X, —Xs#0 : Responssunbalanced

D Is multivariate;
we need aunivariate measure of
Imbalance

To this end, usep'x3'D
a guadratic form inD

J xJ weightingmatrix: Xg=» dixxjc/ ) di

assumed non-singular



Notation : IMB = D'Zng

Note: IMB (for Imbalance) depends on
(1) the composition of the auxiliary vectog;

(i) the composition ofl , given S

II\/IB(r,xk\s) would be more informative notation

But let us use simply{MB



Properties of the imbalance statistic
IMB= D'XgD

balancedesponse=> D=0 = IMB=0

IMB >0 anyoutcomg(s,r) andvectorxy



The imbalance statistic
IMB=D'Eg!D = (X —Xs)'Es (X, —Xs)

IS an extension
to multivariate auxiliaries

meandifference X, —Xg

of the univariate
stand.deyv Sy



Interposing the inverse onS “standardizes”

and permits a simple upper bound
to be stated on  |MB =D'E5'D



For any outcome S, I) and vectorX,, we have

1
0< IMBSE—l P = responseate

20% nonresponse. O0<IMB < 0.25

50% nonresponse. 0 <IMB< 1

IMB is “not a big number”

But IMB = 0.20 can mean large imbalance
compared withIMB = 0 which is perfect balance



IMB
/P-1

Theratio

(between O and 1) measures the degree
to which X explains the response

(Exercise: Show it!)



Experience with survey data shows
IMB usually not close to its upper bounB‘—l

Usually IMB < 0.3

but depending greatly on the choicexefector :
. the number ok-variables
. how well they “explain” nonresponse



For fixed responsd and given samplé&

adding more variables tX, increasesiMB

(proof not given here)

A bigger X-vector has more imbalance, naturally,
because more variables on which means have to agree

The trivial x-vector X, =1 hasIMB =0
yet Is a totally unattractive vector



Achieving well balanced response
IS a challenge we impose on the data collection

The task Is tougher the mobevariables
we decide to balance on
(but rewards may be greater)



Some simple functions of thBVIB statistic
are very useful :

 The idea of distance (between respondents and
nonrespondents)
 The notion of Balance (imbalance with opposite sign
 Related is the R-indicatoiR(for representatitity;
the RISQ project)




The notion of distance

between respondents and nonrespondent3r =S - r

e

. A P 1/2
dlStr‘nr ={(Xr —Xs ) X5 (X —Xg_r)}

Its simple relation to imbalance :

1

rlnr = 1_p

dist IMB

P=> dc/> d. =responsrate



1

The distance diSt; | = ) IMB

For example, 40% nonresponse, ai¥iB = 0.16

— distr‘ﬂr =1



. 1
Property. dist <
PErY |nr JP(1-P)
For ex., nonresponse 50%> distance< 2

even for the most ill-structured responge
Experience shows : It is seldomO0.5

again depending greatly on our choiceXeiector



The notion of balance
of the response set

Bl —1_ IMB
P -1

Bl for Balance Indicator ;
between 0 and 1



A legitimate objective :
Achieve small distance
So as to have “respondents like nonrespondents”
when data collection ends



The Swedish Living Conditions Survey 2009

Telephone interview survey.
WInDATI events (contact attempts) are registered

Ordinary data collection: 3 weeks;
for some units, > 30 contact attempts;
at the end, resp. rate = 60.4 %

Follow-up, 3 weeks, final resp. rate =67.4%




Ordinary data collection
(with > 20 call attempts for many units)

Follow-up data collection
(with > 10 call attempts for many units)

All these attempts - Isitworthit ?



Monitoring the data collection

In a dynamic perspective : A series of expanding
response sets, viewed as a function of the timetpa

D@ @

For simplicity, letl denote any one of the growing sample subsets



For the Swedish LCS 2009, we compute
the imbalance statistic

IMB=D'EZ'D = (X, —Xs)' T (X, —Xs)

and the distance respondents-to-nonrespondents

. o vyl o w12
disty|nr ={(Xy —Xs—r)'Eg™ (Xr —Xg—r)}



More specifically, we computdB and the
distance repeatedly during data collection

(for a series of growing response séjs
and for the vector

Xk =(0,...1...0)

of dimension §: 8
defined by crossing of three dichotomous x-variaple

educx ownerx origin



The actual LCS 2009 data collection file

Attempt # 100 x P | 100 x IMB | dist,/n,
1 ordin 12.8 4.13 0.233
5 ordin 44.3 2.99 0.310
12 ordin 57.7 2.78 0.394
End ordin 60.4 2.72 0.417
1 fol-up 61.4 2.61 0.418
4 fol-up 64.6 2.37 0.435
Final 67.4 2.36 0.471

Note: The distance increases the whole time




The actual LCS 2009 data collection

The distance between respondents and
nonrespondents increases the whole time

From 0.310 atattempt#5
To 0.471 at the end of data collection

Nonrespondents become _more and more unlike
respondents.

This Is disturbing, even unacceptable



The actual LCS 2009 data collection

Distance increases the whole time

Alternative interpretation :
Respondents are becoming less and less representati
Signs of an inefficient data collection.

Why continue data collection
according to un unchanged format,
and just get “more of the same” ?



Mathematical note : We are assumirgectors of
the type:

There exists a constant vectqt such that

nx, =1 forall kes

Most vectors of interest are If this type, for. ex.

If X =@ Xxk), take u=(10)

|f Xk =Yk :(yJJ(""’yjk""’ka)’: (0’1’,0)'
take u=(11,....1)’



3. Monitoring the data collection
(a form of Responsive Design)

A dynamic perspective : Data collection extendsrav
period of time (days, weeks)

We can perhaps make suitable interventions or @sng
underway

to obtain in the end a well balanced response set.



Monitoring the data collection

Dynamic perspective : Monitor the data collecti@een as
function of the contact attempts (attempt 1, apie?...)
or of the data collection days, (day 1, day 2 ...)

and perhaps make suitable interventions or changes

Using tools that we now havelMB , and functions ofMB



Monitoring the data collection

A series of expanding response sets, viewed as a
function of the time point a

D@ @

For simplicity,I' denotes any one of the growing sample subsets



During data collection, how can we redutiéB = D’):ng
bring D closer to the zero vector ?

What interventions in the data collection ?

What modifications of an original plan ?



Monitoring the data collection

Differentiate the sample units,
via their observable characteristics,

iIntervene and halt the contact attempts in samydgr®ups
where “realistic expectations” on the response
have already been met -

It does not pay to pursue those any more,
It just gives “more of the same”



Collecting “more of the same”

IS often unproductive,

does not reduce imbalance IMB = D’Zng

. 1
does not reduce dIStr‘nr =15 IMB



Considerations

e a good data collection should show decreasing

distancedist, ~as I expands, should be small at the
end

- dist, ~ a more sulitable tool for monitoring th&lB,
which tends to decrease ds grows towards full
responseS (becauseD — 0)



Thex-vector used to definedlMB is general.
Only one case discussed here:

The particularly transparent case df
mutually exclusive and exhaustive groups

Xk =(0,...1...0)

e.g.size-by-industry

IMB takes a simple expression :
a sum of non-negative terms, one for each group



The case of J sample subgroups

IMB has a simple expression :

J P.
IMB=Y'C, with C, =st><(FJ—1)2
j=1

st = class) proportion out of the whole sampk

Pj = response rate, groyp
P = overall response rate



J sample subgroups

J P.
IMB=>"C, with C; :stx(FJ—l)Z
j=1

A procedure: ComputéMB and theCj repeatedly
during data collection.
Response proportiorP increases.
We observe continuously
Pj = response rate, groyp
and we can follow which groups
contribute most to imbalance

those overrepresented :Pj > P

those underrepresented Pj < P



J sample subgroups

J P.
IMB=>'C, with C; :stx(FJ—l)Z
j=1

Those overrepresented :Pj > P

those we do not need any more of,
although they are “an easy way out”
for the interviewers
because they are “easy cases”



J sample subgroups

)
P.
IMB= ) .Cj with C; IWJ'SX(FJ—].)Z
i-1

Desirable goal :

Make all P, equal= IMB =0 : Perfect balance
for the groupghat we decided to monitor

But seldom will we realize it completely in pra@ic



We return to the Swedish Living Conditions Survéy2:

Telephone interview survey.
WINDATI events are registered

We have seen signs that the current data colletion
inefficient : Distance between respondents and
nonrespondents increases as the data collection
proceeds.



Swedish Living Conditions Survey 2009

Experlments were carried out “in retrospect” :
2°=8 sample subgroups identified by

X = (educx ownerx origin)
called monitoring vector

Data collection considered stopped in a group
when its response rate had reached 60%

Consequence: We disregard some already collected
y-data (to get better balance)



Experiments with Swedish Living Conditions Survé09

Data collection was stopped in a group
when its response rate had reached 60%

Some groups stop sooner than others;

In the end, all groups tend to have more equal
response rates

P.
Theterms C; :stx(—J—l)2 lessvariable
P

J
IMB= > C; isreduced
j=1



Experiment with the LCS 2009 data

Attempt # 100 x P | 100 x IMB | distance
7/ ordin 50.9 3.07 0.357
8 ordin 52.5 2.81 0.353
9 ordin 53.8 2.49 0.341
15 ordin 56.0 1.59 0.287
3 fol-up 58.6 1.09 0.252
Final 58.9 0.82 0.220

Now the distance Is decreasing,

thanks to interventions
(data collection stopped in groups with P > 60%)




Experiment with the LCS 2009 data

100 x P | 100 x IMB | distance

Final 58.9 0.82 0.220

Compare actual LCS 2009 data collection

Final 67.4 2.36 0.417

Despite much smaller response rate (58.9 vs. 67.4)
get much smaller distance (0.22 vs 0.42)



Scenario for data collection stage (Responsivednes
an example

e Decide on a monitoring vectorX;

* During data collection, compute group response I%t
for | = 1,...,J
« If P; hasreached “reasonable expectations”,
cease data collection in that groyp
* Focus data collection on other groups, until the e

* Proceed to estimation stage and nonresponse iadjuist
of estimates



General procedure basedowector of arbitrary type

(with continuous and/or categorical variables)
based on response propensity,

» At several points in the data collection, compBte
forall ke s

e At point 1, stop data coll. for those unktiaving

attained “high5|< " (e.g. the 20% highest), thelse aside

« At point 2, stop data coll. for next 20%

 And so on until the end

 Proceed to estimation stage and
nonresponse adjustment of estimates



L ectures
by

Carl-Erik Sarndal
Orebro University
Statistics Sweden

Baltic-Nordic-Ukrainian Workshop
Valmiera, Latvia
24-28 August 2012



Lecture 3 : The estimation stage.:
Calibrated weighting for nonresponse bias reduction
and preferably without increased variance

The scenario is now changed: respohsés fixed
cannot be improved any more ;
we have to live with it in the estimation



Estimation stage . adjusting for nonresponse

rc s < U
responsec sample — population

Y| recorded K e r only

Response set s fixed
cannot be improved any more ;
Objective: Construct an efficiertvector



Available : a supply of aux. variables, perhapsyna

Objective: construct an efficiertvector,
used to compute calibrated weights

to reduce as much as possible
the bias still affecting the estimates

despite (incomplete) balancing at the data cotkacstage




How do we select, in a stepwise or other fashion,
thex-variables that adjust the madkt

“Pick best ones first” is one option

Numerousy-variables complicates the question

Effective adjustment for one is maybe not so fteos

For sake of theory, must look at one of them



Estimators

of the population total ZU Yk

Unbiased, but not available under nonresponse
Horvitz-Thompson, forfull response

YeuL = 2 Ak Yk



Estimators under nonresponse

e Basic, but poor choice, considerably biased :
the crudeeXpansion estimator

N\

Yoo =NV Ve =2 Y/ D, dk

e Adjusted, less biased,
by calibration on a potent-vector :

YcAL =Y, dkMi Yk

m, = adjustment factor computed on choséwector



Calibration estimator of Y =3 'y,

YeaL = 2., dkmk vk
uses adjustment factor

my = (stkxk)'ZrdekX'k)_l Xk

column

row Vvector

Weights d, my calibrated tozsdkxk

Note: X, here may be different from the,
used to monitor the data collection



Calibration estimator Yep; = > dgmyyk

with rrk=(ZSdek)’ZrdekXi<)_1 Xk
- " column

row Vector

For somex-variables, information
all the way up to the population level

(« star variables ») "
_ [ij
Xk =

0]

Weights dkmk calibrated to [ZZ‘(J:IXKJ
s Ak Xk



Building X-vector from scratch
more & more variables added tw
fixed r and s

&
<

| | | |
O ~ A A
YFUL  YcaL YEXF

\?CAL moves away from \?EXF (very biased)

and approaches \?FUL (without bias)



When X, Improves, for fixedr and s

<
<

YruL  Yeal YExp

adjustment

o N

1 _ YEXP~YCAL
YEXP— YFUL

bias ratio =

goes diminishing
but probably not to zero



bilasratio = 1 —

YExp—YcAL computable adjustment

changes with the choice of-vector,

If large, suggests a considerable bias
has become adjusted for

YEXP—YFUL  not computable, unchanging



Let us examine the computals@ndardized adjustment

StAdj= TEXP~ YCAL
N xSy

Sy =standdev.of y

computed on the responke



Interpretation

Consider

StAdj= YEXP YCA'- =0.10 (fairly typical

N><Sy

Then we have
moved away 0.10 stand.dev.
from the primitive mean estlmatéEXF/ N = Y

to obtain adjusted estimate

YCAL _ YEXP _ g 10x Sy
N N



StAdj= YEXP—YCAL _ 10

N><Sy

Seemingly small, it can mean Sy

a very large move, compared with-Z
n

(fairly typical)

Sy _
Jn

S
for ex n=10000=> Y —0.01x Sy
100

VaN VaN

. Y, .
adjustment EXPN == =0.10S, 10timesgreater




Experience with data shows :

StAdj= YEXP~YCAL  geldom > 0.3

N><Sy

In practice, we can always compufstAd]
But for our understanding we should ask :

Whatfactorsdeterminghe StAdj?



Traditional wisdom holds :

X-vector should (must) explain study variable
X-vector should (must) explain the response

At best, It does so to a degree only

These are two factors we expect to findtAd]

We do, but there Is a third important factor



Some work shows: 3 factors determine

. Yexp—Y,
Stadj= "5 =IMB xRy, x Ro ¢
y

where IMB is the imbalance (still remaining)

F%/x and RDC are correlation coefficients



DE

StAdj= v IMB x R, xRy ¢
Wehave Ry yx <1 ; ‘RD C‘sl

andtypically 0< IMB < 0.3

Forex. StAd] =0.5x0.8x0.2 =
Adjustment = 0.08 stand.dev.
:adjustecbst:YCAAL _ Yexe

N N

8%

— 0.08x Sy



The three factors

StAdj= TEXP~CAL

N)(Sy :’\/IMBXRy’XXRD’C



The first factor

VIMB = \/D’Zr_lD sgrt. iImbalance

This factor depends ononly, not on any of the (manyy's
It measures the degree to which explains the response

Perfect balance IMB = 0 : No adjustment occurs

weightingmatrix: X, = > dyxyxic/ ) di

Note:overlI not S



The second factor

Ry x = coef. multiple corr. betweely and X

based on datdy,,X,) , KeT, dweighted



The third factor

RD,C = coeff. of corr. betweerDj et Cj

Viewed asJ data points, (Dj’ Cj)’ i=1,....J;

D = Xy — Xjs deviation, x-variable |

Cj

covariancgXx;, y)



The third factor RD,C is high

if the large deviations D = Xj — Xjg
go together with the large correlatioD(F-to-y

] = 1,2,..., J =#variables irx-vector



Large adjustment stadj= YE>I<<|P‘;(CAL occurs If
X
Yy

e Large imbalance still needing to be compensated fo

* High relationship Y-to-X
 High relationship between
deviationsD; and covariances;
- large deviations matched with
high correlations




DE

Properties of StAdj=~EXP~YCAL
' N x Sy

when we add more-variables to the vectob(k:
. first factor IMB Increases
* second factolR , Increases

* third factor RDC’ may not increase
In abs.value but may be fairly constant

StAd] does not necessarily increase



oe  Criteria for stepwise selection
of variables for thex-vector

H, =+VIMB
'H, =vIMB xR,

‘H, = /IMB x R, . X‘RD,C‘

Advantage ofH;: computed only from the valueX, ;
does not involve theg/-variable .

H1 andH > dependnboth y andx



Criterion Hs ; order of selection

Step | Variable entering H3><1O3 RDF
O | (trivial) 0 10.6
1 |EDUCATION LEVEL (3) 186 6.0
2 | POSTAL CODE CLUSTER (6) 250 5.6
3 | COUNTRY OF BIRTH (2) 281 5.5
4 | INCOME CLASS (3) 298 2.4
5 |AGE CLASS (4) 354 3.1
6 |SEX(2) 364 2.8
7 |URBAN DWELLER (2) 374 2.6
8 |INDEBTEDNESS (3) 381 2.3

RDF = relative deviation from unbiased est.




Discussion and conclusion

How should the nonresponse problem be treated

At the data collection stage ?
At the estimation stage ?



Discussion

The important difference from the theory point aw :

Data collection stage: The response set Is
“tailored”, to some degree constructed

Estimation stage : The response set is fixed;
Estimation theory is the basis for
nonresponse adjustment



Discussion

The data collection:

Responsive design Is a prominent topic in the
survey literature today.

It can give us ideas and tools to obtain
a high quality set of respondents



| have discussed Importameasurable quality features
of the response set, relative to a stated auxiiacgor X

They refer to the_composition of the response set .
balance distance




Discussion

Responsive design and “creative data collection”
should not be approached as a topic separate rem t
estimation .

A combined look at the data collection phase &ed t
estimation phase is recommended .

Much work remains to do here .



Discussion

The estimation stage:
The remaining bias still needs to be adjusted for.
Estimation theory is important.

One must not believe the task is finished afteatahg
the data collection on a choseivector.



Thank you for your attention
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