Comparison of Energy Resource Survey Results of 2010 and 2011 Baiba Buceniece

Central Statistical Bureau of Latvia

(1)

g:

About the survey

- Annual enterprise survey of energy resource acquisition and consumption.
- Stratified simple random sample.
- ► Sample size:
- ▶ for 2010 5506;
- ▶ for 2011 5508.
- Main variables of interest:
 - ▶ amount of received heat,
 - consumption of electricity,
- consumption of petrol,
- consumption of diesel oil,
- consumption of natural gas.

Problems

Lack of "good" auxiliary information: ▶ in sample selection stage - weak correlation between survey variables and available stratification variables.

Sample allocation for 2010

Calculated using Neyman allocation:

$$n_h^{Neyman} = n_d^{min} imes rac{N_h S_h}{\sum_{h=1}^{L_d} N_h S_h},$$

- $\blacktriangleright N_h^{Neyman}$ population size of strata
- $\blacktriangleright n_d^{min}$ minimum sample size of domain
- $\blacktriangleright L_d$ number of stratas in domain
- $S_h = \sqrt{\frac{1}{N_h-1} \sum_{i=1}^{N_h} (y_i \bar{Y}_h)^2}$ is standard deviation of enterprises turnover (or number of employees in stratas of NACE section "O").
- Optimization of sample allocation is done in order to achieve smallest sample size n_d of domain d, (d = 1, ..., D)which allows not to exceed predefined sampling error (CV). For each domain $CV_{max} = 4\%$ for turnover (or number of employees).

Calculation of weights for 2010

Sample allocation for 2011

- Calculated using survey data from 2010.
- 1. Stratification intended for 2011 is applied to sampling frame of 2010; 2. g stratas are established $(g = 1, \ldots, G)$;
- 3. Population size M_g of each strata g is calculated;
- 4. Variances of 5 main variables of interest are estimated for each strata

$s_g^2 = \frac{1}{M_g - 1} \sum_{h=1}^{H} \frac{N_h}{n_h} \sum_{i=1}^{n_h} y_{hi}^2 z_{hi} - 1$ $-\frac{M_g}{M_g-1}\left(\left(\frac{1}{M_g}\sum_{h=1}^{H}\frac{N_h}{n_h}\sum_{i=1}^{n_h}y_{hi}z_{hi}\right)^2-\right)$ (2) $-\frac{1}{M_g^2}\sum_{h=1}^{H}N_h^2\left(\frac{1}{n_h}-\frac{1}{N_h}\right)\frac{1}{n_h-1}\sum_{i=1}^{n_h}\left(y_{hi}z_{hi}-\frac{1}{n_h}\sum_{t=1}^{n_h}y_{ht}z_{ht}\right)^2\right),$

where $z_{hi} = \begin{cases} 1, hi \in \theta_g \\ 0, hi \notin \theta_g \end{cases}$; θ_g is set of indices of observed units in 2010 belonging to the strata g. To obtain the estimates s_{g}^{2} following two conditions must be met: $n_h > 1$, $\forall h$ and $\theta_g \neq \emptyset$, $\forall g$.

- ▶ in estimation stage auxiliary information for calibration available only in aggregated level;
- ► Large amount (674) of different very specific survey variables.
- ► Many "0" values of survey variables.
- Many domains of interest, which can not be planed in sample selection stage.

Sampling frame

- ► Consists of:
- economically active merchants,
- state and municipal budget authorities,
- agricultural and fish farms with >= 10employees.
- ► Not included:
 - individual merchants,
 - public organizations,
 - agricultural and fish farms with < 10employees.
- ► Size of the frame:
 - ▶ for 2010 60321 units,
 - ▶ for 2011 63565 units.

- Several sets of weights are computed:
 - weights for variable "amount of received heat";
 - weights for variable "consumption of natural gas";
 - one set of weights for two variables "consumption of petrol" and "consumption of diesel fuel";
 - ▶ weights for variable "consumption of electricity" (weights are calibrated. Hence, the estimated variances are equal to 0 in domains, that match the domains used for calibration);
 - one set of weights for many variables associated with consumption of fuelwood;
 - ▶ one set of weights for other survey variables.
- ► All sets of weights, except for "electricity", are calculated as design weights adjusted by nonresponse and taking into account outliers defined for each set of variables separately.

Horvitz-Thompson (HT) estimator

$$\hat{Y}_{HT} = \sum_{i=1}^{n^R} y_i w_i$$

- $\blacktriangleright n^R$ number of respondents
- $rightarrow y_i$ value of study variable of unit *i*
- $\blacktriangleright N_h$ population size of strata h $\blacktriangleright w_i$ - weight of unit *i*
- ► Variance estimator:

- 5. "Optimized" Neyman allocation is used for calculation of sample sizes for each of 5 main variables:
 - $CV_{max} = 25\%$ is set for domains;
 - ▶ in formula (1) S_h is replaced with $\sqrt{s_g^2}$ calculated by (2).
- 6.5 different sample sizes for each strata are obtained;
- 7. The final sample size for each strata is calculated as an average of these 5.

Calculation of weights for 2011

- Only one set of weights is computed for all survey variables:
- 1. design weights are adjusted taking into account nonresponse and frame changes;
- 2. weights are calibrated using auxiliary information about delivered electricity and natural gas.

GREG estimator

•
$$\hat{Y}_{GREG} = \sum_{i=1}^{n^R} y_i w_i g_i$$

► Variance estimator:

$$\hat{V}_{GREG}(\hat{Y}) = \sum_{h=1}^{H} \left(1 - \frac{n_h^R}{N_h} \right) \frac{n_h^R}{n_h^R - 1} \sum_{i=1}^{n_h^R} \left(w_{ig_ie_i} - \frac{1}{n_h^R} \sum_{i=1}^{n_h^R} w_{ig_ie_i} \right)$$

Stratification

- ► Based on:
 - ► economic activity (NACE Rev.2),
 - ► turnover,
 - number of employees (in NACE section "O" -Public administration and defence; compulsory social security, where turnover is missing).

Conclusions - options of improvement

- ▶ In many cases (for domains and for totals) GREG estimator is less precise than HT estimator.
- Estimated sample size for 2011 is \approx 12 000 to get CV (in domains) of main variables <=5%.
- Looking for better auxiliary information for calibration.

Coefficients of variation (%) of some variables

Synchronisation of domains used for sample selection and domains used for publication of survey results.

Variances of "Petrol"

	2010	2011	
	V _{HT}	V _{HT}	V _{GREG}
TOTAL	7 129 774	4 424 207	5 460 166
Dom1	104 688	370 220	355 336
Dom2	55	22 623	20 723
Dom3	4 950	474	8 029
Dom4	1 458	8 167	203
Dom5	20 963	173 809	151 518
Dom6	9 493	18 899	18 433
Dom7	60 147	94 341	106 609
Dom8	12 731	. 1 413	2 422
Dom9	1 044	2 835	2 821
Dom10	8 600	6 492	6 028
Dom11	15 538	96	199
Dom12	Δ	24	21
Dom13	(0	0

References

- ► Lapins, J. (1997). Sampling surveys in Latvia: Current situation, problems and future developments. Statistics in Transition: Journal of the Polish Statistical Association 3, 281 - 292.
- ► Särndal, C. Lundström S. (2001). "Estimation in the presence of nonresponse and frame imperfections". Statistics Sweden.
- ► Osier, G. The linearisation approach implemented by EUROSTAT for the first wave of EU-SILC: What could be done from the second wave onwards? Luxembourg Income Study (LIS), Institut National de la Statistique et des Etudes Economiques (STATEC Luxembourg) and Net-SILC2. Paper prepared for the workshop on standard error estimation and other related sampling issues (Eurostat, 29-30 March 2012)

e-mail: baiba.buceniece@csb.gov.lv