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Abstract
The Central Statistical Bureau of Latvia (CSB) in 2012 developed R (R Core Team

(2018)) package vardpoor (Breidaks et al. (2018)) (a set of functions for statistical
calculation in programme R). The package vardpoor was developed with the objective
to modernise the sample error estimation in sample surveys. Before the package was
developed, sampling errors were estimated using the chargeable programme SUDAAN
(www.rti.org/sudaan). Use of SUDAAN had several shortcomings:

• Only obsolete SUDAAN version was available at CSB, which had to be updated;
• Updating of SUDAAN version would require financial resources;
• It is difficult to integrate SUDAAN into work with other data processing pro-
grammes (IBM SPSS Statistics or R);

• With the help of SUDAAN it was possible to linearize only non-linear statistics,
as the ratio of two totals, but in the EU-SILC survey there were several other
non-linear statistics, which had to be linearized separately;

• SUDAAN sampling error estimation did not include the effect of weight cali-
bration.

Given the above shortcomings, it was decided to develop the vardpoor package,
which would be designed as R extension. First of all, R is an open-source free sta-
tistical calculation environment; secondly, R is currently the most popular computing
environment among statisticians; and thirdly R environment is very convenient and
suitable for development of such solutions. It should also be mentioned that, upon
developing vardpoor package as R extension, it was easily integrated in the statistical
production processes.

The theoretical basis of vardpoor was borrowed from G. Osier article The Lineari-
sation approach implemented by Eurostat for the first wave of EU-SILC: what could
be done from the second wave onwards? (Osier & Di Meglio (2012)), which was pre-
sented at the workshop devoted to the evaluation of the standard errors and other issues
related to the EU-SILC survey in March 2012.
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1 Introduction
The Central Statistical Bureau of Latvia (CSB) in 2012 developed R (R Core Team (2018))
package vardpoor (Breidaks et al. (2018)) (a set of functions for statistical calculation in



programme R). The package vardpoor was developed with the objective to modernise the
sample error estimation in sample surveys. Before the package was developed, sampling
errors were estimated using the chargeable programme SUDAAN (www.rti.org/sudaan).
Use of SUDAAN had several shortcomings:

• Only obsolete SUDAAN version was available at CSB, which had to be updated;

• Updating of SUDAAN version would require financial resources;

• It is difficult to integrate SUDAAN into work with other data processing programmes
(IBM SPSS Statistics or R);

• With the help of SUDAAN it was possible to linearize only non-linear statistics, as
the ratio of two totals, but in the EU-SILC survey there were several other non-linear
statistics, which had to be linearized separately;

• SUDAAN sampling error estimation did not include the effect of weight calibration.

Given the above shortcomings, it was decided to develop the vardpoor package, which
would be designed as R extension. First of all, R is an open-source free statistical calcula-
tion environment; secondly, R is currently the most popular computing environment among
statisticians; and thirdly R environment is very convenient and suitable for development of
such solutions. It should also be mentioned that, upon developing vardpoor package as R
extension, it was easily integrated in the statistical production processes.

The theoretical basis of vardpoor was borrowed from G. Osier article “The Linearisa-
tion approach implemented by Eurostat for the first wave of EU-SILC: what could be done
from the second wave onwards?” (Osier & Di Meglio (2012)), which was presented at the
workshop devoted to the evaluation of the standard errors and other issues related to the
EU-SILC survey in March 2012.

2 Sampling error estimation mechanism
Sampling error estimation mechanism consists of a sequence of procedures:

1. Calculation of the domain-specific study variables, if the sampling error is to be esti-
mated for population domains;

2. At-risk-of-poverty threshold linearization using Gaussian kernel (Osier (2009) and
smoothing splines (Asmuss et al. (2016));

3. Calculation of regression residual if the weights are calibrated;

4. Variance estimation with the ultimate cluster method ( Hansen et al. (1953));

5. Variance estimation for the simple random sampling design.

2.1 Calculation of the domain-specific study variables
Often separate estimates for subpopulations are needed. Subpopulations are called domains.
The domains concerned are denoted as (U1, ..., Ud, ..., UD) It is assumed that y total value
in each domain must be estimated. The aim is to estimate (Y1, ..., Yd, ..., YD), where

Yd =
∑
k∈Ud

yk, d = 1, ..., D (1)



The domain total can be expressed with a new variable ydk, constructed from y specifically
for domain Ud (Lundstöm & Särndal (2001)). The new variable is denoted with ydk and its
values for each element k are defined as

ydk =

{
yk, if k ∈ Ud,

0, if k /∈ Ud.
(2)

Then Yd can be expressed as a total from the new variable ydk for the whole population:

Yd =
∑
k∈U

ydk (3)

2.2 Linearization approach
The linearisation method (Särndal et al. (1992), Deville (1999), Osier (2009)) uses Taylor-
like series approximation to reduce non-linear statistics to a linear form, justified by asymp-
totic properties of the estimator (Verma & Betti (2005)). The method based on influence
functions (Deville (1999)) is general enough to handle all the complex non-linear indicators
of poverty and inequality based on EU-SILC such as the at-risk-of-poverty threshold. The
estimated variance of the estimator θ̂ can be approximated by a linear function of the sample
observations:

V̂ ar(Ŷ ) ∼= V̂ ar
(∑

k∈s

wk · ûk

)
, (4)

where the value of the estimated linearized variable ûk is determined by calculating the
following functional derivative:

ûk = lim
t→0

T
(
M̂ + tδk

)
− T

(
M̂

)
t

, (5)

where the estimated population parameter θ̂ is expressed T as a functional of the measure
M̂ , i.e.,

θ̂ = T
(
M̂

)
, (6)

and the measure M̂ allocates the sample weight wk to each unit k in the sample s:

M̂
(
k
)
= M̂k = wk, k ∈ s, (7)

δk is the Dirac measure at k: for each unit k in the sample, δk(i) = 1 if and only if
k = i. The functional derivative (18) is called the influence function.

2.3 Weighted quantile estimation in the domain
Quantiles are defined as Q−1

D,p = F−1
D (p), where FD is the income distribution function on

the population in the domain D, i.e.,

FD,y(x) =
1

ND

∑
k∈UD

1[yk≤x] (8)

and 0 ≤ x ≤ 1. The median is given by p = 0.5. For the following definitions, let
nD be the number of observations in the domain D of the sample, let xD := (x1, ..., x

′
nD

),
denote the equalized disposable income with x1 ≤ ... ≤ xnD

, and let wD := (w1, ..., w
′
nD

)



be the corresponding personal sample weights. Weighted quantiles for the estimation of the
population values in the domain D according are then given (M. (2013)) by

Q̂D;p = Q̂D;p(xD, wD) :=


1

2
(xj + xj+1), if

∑j
i=1 wi = p

∑nD

i=1wi,

xj+1, if
∑j

i=1 wi < p
∑nD

i=1wi <
∑j+1

i=1 wi.
(9)

2.4 Calculation of the at-risk-of-poverty threshold in domain and its
linearization

The at-risk-of-poverty threshold (ARPT) in the domainD is defined as 60% of the median
income in the domain D:

ARPTD = 0.6 · F−1
D (0.5) (10)

ARPTD = 0.6 · Q̂−1
D;p(0.5) (11)

The linearized variable of the ARPT in the domain D is defined by Osier (Osier (2009)):

ûARPT
D;k = I(ARPTD)k = 0.6 · I(Q̂D;0.5)k =

−0.6

f(Q̂D;0.5)
·
1[k∈D]

N̂D

[
1[yk≤Q̂D;0.5]

− 0.5
]
, (12)

where yi is i-th equalized disposable income, N̂D is estimated size of the population in
the domain D.

f(.) is estimator of the density function which in the next subsections will be descripted
using smoothing splines estimation and Gausian kernel estimation.

2.4.1 Calculation of the density function using Gaussian kernel estimation

Deville (1999) and Osier (2009) suggest using Gaussian kernel estimation for the calculation
of the density function. The density functions can be estimated on the basis of the Gaussian
kernel function as follows (Preston (1995))

fD(x) =
1

N̂DĥD

∑
i∈D

wiK
(x− yi

hD

)
(13)

where
K(o) =

1

hD

√
2π

e−
o2

2 (14)

is the Gaussian kernel. N̂D =
∑

i∈D wi is the Horvitz and Thompson (Horvitz & Thompson
(1952)) estimator of the population size in domain D; hD is the bandwidth parameter in the
domain D. For normally distributed population densities, the following bandwidth parameter
was recommended by Silverman (Silverman (1986))

ĥD = σ̂DN̂
−0.2
D (15)

σ̂D is the estimated standard deviation of the empirical income distribution:

σ̂D =
1

N̂D

√
N̂D

∑
i∈sD

wky2k −
(∑

i∈sD

wkyk

)2

. (16)



2.4.2 Calculation of the density function using smoothing splines function estima-
tion

The density functions can be estimated on the basis of the smoothing splines function as
follows

fD(x) =
1

N̂DĥD

∑
i∈D

wis
(x− yi

hDi

)
(17)

where s(x) is the smoothing spline, N̂D =
∑

i∈D wi is the Horvitz and Thompson
(Horvitz & Thompson (1952)) estimator of the population size in domain D; hD is the
bandwidth parameter in the domain D. For smoothing population densities, the following
bandwidth parameter was recommended by Silverman (Silverman (1986))

ĥD = σ̂DN̂
−0.2
D (18)

σ̂D is the estimated standard deviation of the empirical income distribution:

σ̂D =
1

N̂D

√
N̂D

∑
i∈sD

wky2k −
(∑

i∈sD

wkyk

)2

. (19)

Smoothing spline s is solution for the following problem of histopolation in the Sobolev
spaceW q

2 [a, b].

b∫
a

(g(q)(t))2 dt −→ min
g ∈ W q

2 [a, b],
ti∫

ti−1

g(t)dt = fihi, i = 1, . . . , n.

A solution of the spline s is in the form

s(t) =
r−1∑
j=0

ϱjt
j +

(−1)r+1

(2r)!

n∑
i=1

αi((t− ti)
2r
+ − (t− ti−1)

2r
+ ) (20)

with the following conditions on the coefficients:
n∑

i=1

αi

j + 1
(tp+1

i − tp+1
i−1 ) = 0, p = 0, 1, . . . , r − 1. (21)

2.5 Regression residual calculation
If the weights are calibrated, then calibration residual estimates êk are calculated (Lundstöm
& Särndal (2001)) by formula

êk = yk − x
′

kB̂, (22)
where

B̂ =
(∑

k∈s

dkqkxkx
′

k

)−1(∑
k∈s

dkqkxkyk

)
(23)



2.6 Variance estimation with the ultimate cluster method
If we assume that nh ≥ 2 for all h, that is, two or several primary sampling units (PSUs) are
sampled from each stratum, then variance of θ̂ can be estimated from the variation among
the estimated PSU totals of y (Hansen et al. (1953); Osier & Di Meglio (2012); Di Meglio
et al. (2013)):

V̂ (θ̂) =
H∑

h=1

(1− fh)
nh

nh − 1

nh∑
k=1

(yhk∗ − ȳh∗∗)
2 (24)

where

• yhk∗ =
∑mhk

j=1 whkjyhkj

• yh∗∗ =

∑nh

k=1 yhk∗
nh

• fh is a sampling fraction of PSUs for stratum h,

• h is the stratum number, with a total of H strata,

• k is the number of PSU within the sample of stratum h, with a total of nh PSUs,

• j is the household number within PSU k of stratum h, with a total ofmhi households,

• whkj is the sampling weight for household j in PSU k of stratum h,

• yhkj denotes the observed value of study variable y for household j in PSU k of
stratum h.

2.7 The design effect estimation and effective sample size
The design effect of sampling is estimated by

D̂eff sam(θ̂) =
V̂ arCUR,HT (θ̂)

V̂ arSRS,HT (θ̂)
(25)

where V̂ arSRS,HT (θ̂) is the variance of HT estimator under SRS, V̂ arSRS,HT (θ̂) is the
variance of HT estimator under current sampling design.

The design effect of estimator is estimated by

êff est(θ̂) =
V̂ arCUR,CAL(θ̂)

V̂ arCUR,HT (θ̂)
(26)

where V̂ arCUR,CAL(θ̂) is the variance of calibrated estimator under current sampling design.
The overall design effect of sampling and estimator is estimated by

D̂eff(θ̂) = D̂eff sam(θ̂) · êff est(θ̂) (27)

The effective sample size is estimated by

n̂eff (θ̂) =
n

D̂eff sam(θ̂)
, (28)

where n is the sample size or the number of respondents (in case of non-response).



3 R package vardpoor
3.1 Function varpoord description
Function varpoord is used to estimate sampling errors for indicators on social exclusion and
poverty. Data is given at the person level, but information for the calibration is given at the
household level. At the beginning of the function execution a range of tests is performed in
order to test if there are any mistakes in data. Function varpoord consist argument type, if
it is chosen linarpt, then calculate the at-risk-of-poverty threshold (ARPT) in the domain
and linearized values in the domain D using Gaussian kernel (Osier (2009) and smoothing
splines (Asmuss et al. (2016))

If calibration matrix X and g weights are used at household level, function calculates the
residuals at the household level. Function varpoord outputs several results:

• point estimates for statistics,

• variance estimates,

• relative standard error,

• absolute margin of error,

• relative margin of error,

• lower and upper bound of the confidence interval,

• variance of HT estimator under current design,

• variance of calibrated estimator under SRS,

• the sample design effect, the estimated design effect of estimator,

• the overall design effect of sample design and estimator,

• the effective sample size.

3.2 varpoord function testing results
Function was tested on simulated Austria data of EU-SILC. In this function will test ARPT
quality indicator using smoothing splines (Asmuss et al. (2016)), the function varpoord() is
used:

smooth_cal <- varpoord(inc = "INC_ekv20",
w_final = "db090",
income_thres = "INC_ekv20",
wght_thres = "db090",
ID_household = "db030n",
H = "db050",
PSU = "db060",
sort = NULL,
dataset = dataset2,
type = c("linarpt"),
method = "smooth_splines",
r = 2,
ro = 0.01)



Table 1: ARPT quality in 2012

method estim se cv
Gaussian kernal 1876.67 50.59 2.69

Smoothing spline r=2 ρ = 0.01 1876.67 70.18 3.74

In this function will test ARPT quality indicator using Gaussian kernel (Osier (2009),
the function varpoord() is used:

gausian_cal <- varpoord(inc = "INC_ekv20",
w_final = "db090",
income_thres = "INC_ekv20",
wght_thres = "db090",
ID_household = "db030n",
H = "db050",
PSU = "db060",
sort = NULL,
dataset = dataset2,
type = c("linarpt"),
method = "Gaussian")

In table was shown has calculated standard errors, coefficient of the variance.
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