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Abstract 

Income is a demanding continuous variable in the case of missing data. One reason is that 

income of the non-respondents is often low although some high income people are not either 

good respondents. Imputation is in general a better method than weighting to solve the problem. 

The second point concerning income is that the average is not most interesting but income 

differences. This paper is focused on both these estimates using international data when we 

know true values. The missingness is created by the unknown person and hence we do not know 

its mechanism. The auxiliary variables available are not ideal leading to difficulties when 

implementing the imputation model. On the other hand, some imputation tasks are not working 

since they give negative incomes that are not correct at all.  
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1 Introduction 

Imputation is for replacing missing values with plausible ones. If this procedure has been 

done once, it is single imputation (SI). SI is a usual tool in statistical offices or other 

public survey institutes, in particular. However, SI can be performed several times as well. 

If this procedure is repeated a number of times and ‘coordinated’ well, the outcome is 

‘multiple imputation’ (MI). What such a good coordination means, it is a special question? 

Rubin in his books (1987, 2004, 118-119) says that each imputation should be ‘proper’. 

He also gives some rules for proper imputation but they are not necessarily easy to follow, 

or their implementation is not automatic. A big question here is how to repeat the 

imputation process well, that is, what is an appropriate Monte Carlo technique in order to 

get L>1 simulated versions for missing values?  

Rubin (1996, 476, 2004, 75&77) also says that a theoretically fundamental form of MI is 

repeated imputation.  Repeated imputations are draws from the posterior predictive 

distribution under a specific model that is a particular Bayesian model both for the data 

and the missing-data mechanism.  

Several proper MI implementations are given in Rubin’s books and in software packages 

(e.g. SAS and SPSS) using his book. He thus recommends that imputations should be 

created through a Bayesian process as follows: (i) specify a parametric model for the 

complete data, (ii) apply a prior distribution to the unknown model parameters, and (iii) 
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simulate L independent draws from the conditional distribution of the missing data given 

the observed data by Bayes' Theorem.  

These Rubin’s theoretical principles are one starting point of this paper. A good point is 

that MI is not difficult to apply since most types of estimates can be computed in a usual 

way (e.g. averages, quantiles, standard deviations and regression coefficients). The 

Rubin’s framework also serves the formulas both for point estimates and for interval 

estimates. The point estimates are simply averages of L repeated complete-data estimates, 

and thus very logical. His interval estimates are not indisputably accepted. Björnstad 

(2007) gives a modified version for the second component of Rubin’s formula. This leads 

to a larger confidence interval, as a function of the rate of imputed values.  This is logical 

since Rubin’s formula is without any explicit term of the imputation amount but his 

Bayesian rules might implicitly include the same; this is however difficult to recognize.  

Björnstad (2007, 433) also invents a new term, non-Bayesian MI, since his imputation is 

not following a Bayesian process. This term ‘non-Bayesian’ is not used in ordinary 

imputation literature; it cannot be found 9 years alter from a book by Carpenter and 

Kenward (2013) that much follows Rubin’s framework but they use the term 

‘frequentist’. We still use the term ‘non-Bayesian,’ since we cannot say whether it is equal 

to ‘frequentist.’  

Björnstad motivates his approach also from the practical points of view saying that in 

national statistical institutes the methods used for imputing for nonresponse very seldom 

if ever satisfy the requirement of being “proper.” Moreover, Muñoz and Rueda (2009) 

say that several statistical agencies seem to prefer single imputation, mainly due to 

operational difficulties in maintaining multiple complete data sets, especially in large-

scale surveys. We agree with these views. Since a non-Bayesian approach also leads to 

single imputation, that is commonly used if anything has been imputed, a conclusion 

could be that MI cannot be applied using a non-Bayesian framework. We do not agree 

with this argument. Consequently, we have over years applied non-Bayesian tools both 

for single and multiple imputation, although most often for single imputation. This paper 

first summaries our approach to imputation.  

This approach first makes attempts to impute the missing values once. That is, the focus 

is first on single imputation. Correspondingly, the main target in imputations is to succeed 

in such estimates that are most important in each case. Since it is hard to impute correctly 

individual values, it is more relevant to try to get least unbiased estimates for some key 

estimates. Since we here concentrate on a continuous variable, that is, income, two types 

of estimates are of a special importance. One is income average and the other is income 

distribution, respectively. Income distribution can be measured by various indicators such 

as quantiles or Gini coefficient, but the coefficient of variation is here considered to be 

simple enough to indicate well income differences between people.  

Rubin’s approach can be implemented in various ways. We do not develop any own 

implementation but take advantage of the two existing implementations. These are 

derived from two general software packages, SAS and SPSS. We assume that their MI 

procedures follow a Bayesian process since there are such references in their manuals. 
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We thus use the term ‘Bayesian MI’ for application of SAS and SPSS. Respectively, our 

own imputation framework is called ‘Non-Bayesian MI.’   

2 Imputation framework 

In order to succeed in imputation, good auxiliary data or covariates are needed. In the 

case of lacking covariates, simple methods based on observed values only can be applied. 

But if there are covariates both for the respondents and for the non-respondents, ‘proper’ 

imputation methods can be used. In this case, the imputation framework (cf. Laaksonen 

2016) includes the two core stages: 

(i) Construction and implementing of the imputation model 

(ii)  Imputation itself or imputation task. 

These two terms are also used by Rubin (2004) but these are integrated well together in 

our framework. An imputation model can be implemented using a smart knowledge of 

the imputation team or it can be estimated from the same data set or from a similar data 

set from an earlier survey or a parallel survey of another population. If the model is 

estimated from the same data set, it is expected that this replacer behaves more surely 

well in imputations. Hence we estimate the parameters of the imputation model from the 

same data set.    

There are the two alternatives as a dependent variable in an imputation model. It is either 

(a) ‘the variable being imputed’ or (b) ‘the binary response indicator of the variable being 

imputed.’ The same auxiliary variables can be used in both models. Naturally, the 

estimations that are needed in the next step are derived from the different data sets, from 

the respondents for the model (a) and from both the respondents and the non-respondents 

for the model (b). The covariates need to be completely observed to compute the predicted 

values for the stage (ii).  

The imputed values themselves can also be determined by the two options: (i) they are 

calculated using the imputation model or (ii) they are borrowed from the units with the 

observed values using the imputation model as well. The previous option is called ‘model-

donor’ imputation, and the second is ‘real-donor’ imputation, respectively. The latter one 

is often called ‘hot deck’ but this term is not clear in all cases. Terms for the previous 

ones are often such that the model and the task are confused. For example, model 

imputation or regression imputation is not clear since these are referring to imputation 

model but the second step, imputation task, is not specified.   

If a real-donor method is applied, an appropriate criterion and a valid technology to select 

a donor is needed. The natural criterion is to select an as a similar real-donor (observed 

value) as possible. This may be based on a kind of nearness metrics. If a clear criterion 

exists, it is good to select the nearest or another from the neighborhood. If any valid 

criterion does not exist, a random selection from the neighborhood can be used. This thus 

means that all units with observations are as close to each other within the neighborhood 

that can be called ‘an imputation cell,’       



In our approach, the predicted values of either the model (a) or the model (b) are used as 

the nearness metrics, leading to real-donor methods. We focus on multiple imputation 

and hence we impute everything 10 times and calculate their average as the point estimate. 

The variance estimate is the sum of the between variance and the within variance. Rubin’s 

formula does not include the response rate meaning the variance is smaller than in the 

case of Björnstad’s formula. 

Our framework thus is non-Bayesian and so we simply add the noise term to the predicted 

values. We test two types of the noise term using random numbers: (i) normally 

distributed residuals, (ii) normally distributed standard errors. We test several imputation 

models: (i) linear regression, (ii) log-linear regression, (iii) logistic regression, (iv) probit 

regression, (v) log-log regression (LL), (vi) complementary log-log regression (CLL).  

SPSS and SAS use their methods and we simply apply them but we test two imputation 

models: (i) linear regression, and (ii) log-linear egression. They thus are Bayesian.  

3 Empirical examples 

The number of missing values or the imputation size is 3133 (out of 10000)) that is fairly 

realistic. The data set consists of a quite good number of covariates which all except age 

are categorical. The age was however categorized. The full list with the number of 

categories that is used in all imputation models is as follows: gender (2), five-year age 

group (11), marriage (2), civil status (2), education level (4), region (12), Internet at home 

or not (2), socio-economic status (4), unemployed or not (2), children or not (2). As seen 

any of these covariates is not well predicting yearly income (R-square of the linear 

regression model is about 40%).  

Model-donor methods 

The linear regression model is easy to apply for model-donor imputation but it does not 

give excellent results due to many negative values. Table 1 gives the results. 

Table 1. Negative values of model-donor methods (NB = Non-Bayesian, B = Bayesian) 

Method Negative values, % 

Using residuals NB 8.5 

Using standard errors NB 0.3 

SPSS B 16.8 

SAS B 16.6 

We find that all methods give negative values but Bayesian methods much more. Hence 

we do not use more model-donor methods but go to real-donor methods. We have 

explained already the basics of non-Bayesian methods but do not go details as far as 

Bayesian methods are concerned. Both SPSS and SAS have the method called ‘Predictive 

mean matching methods’ that always give observed values, thus not negative.  

 



Real-donor methods 

Table 2 presents the results. They are ordered by the imputation model applied. The last 

four methods are for binary regressions where are symmetric (probit, logit) and 

asymmetric link functions (CLL and LL). We find that log-linear regression is worst but 

it is not easy to know the reason. All imputed averages seem to be too big but the CV’s 

almost always too small. Some imputation methods are however fairly good as far as 

income differences are concerned. One general conclusion could be that the imputations 

are leading to reduce the bias but not enough, concerning averages especially. 

Table 2. Averages and coefficients of variation of yearly income and standard errors by 

Rubin and Björnstad 

  
Ranking 

Mean 

ranking 

Standard error of 

the mean 

Method Average CV Average CV  Rubin Björnstad 

Linear regression 

NB 
46178 66.3 8 7 7.5 692 729 

Linear regression 

SAS 
45121 68.0 3 3 3 896 1017 

Linear regression 

SPSS 
45471 66.2 5 8 6.5 710 757 

Log regression NB 46722 65.2 10 10 10 772 846 

Log regression 

SAS 
46034 66.7 7 5 6 864 973 

Log regression 

SPSS 
46179 66.1 9 9 9 692 728 

Logit regression 

NB 
45468 67.7 4 1 2.5 845 950 

Probit regression 

NB 
44785 67.9 1 2 1.5 754 822 

CLL regression 

NB 
44898 67.3 2 4 3 915 1047 

LL regression NB 45493 66.4 6 6 6 864 976 

True value 43531 67.7 
     

 

The major part of the standard error is derived from the within variance (from 59% to 

79%). This is one reason that the differences between Rubin’s and Björnstad’s standard 

errors respectively are not big. They vary fairly much by methods. If the standard error is 

big, it is easier to get the result that covers the true value. On the other hand, a small 

standard error is often good. The reader can make his/her interpretation what method is 

best and which standard error formula. I prefer the probit regression NB. 
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