Sampling and design-based inference in finite networks

Li-Chun Zhang ${ }^{1,2,3}$ and Melike Oguz-Alper ${ }^{2}$
${ }^{1}$ University of Southampton (L.Zhang@soton.ac.uk)
${ }^{2}$ Statistisk sentralbyraa, Norway
${ }^{3}$ Universitetet \boldsymbol{i} Oslo

Finite population sampling
List-based multistage sampling:

$$
\begin{aligned}
& * \rightarrow * \sum_{\Delta}^{A} \rightarrow \Delta<! \\
& * \rightarrow *<\Delta \xrightarrow[\Delta]{\Delta} \rightarrow \Delta-\Delta \rightarrow 0
\end{aligned}
$$

NB. a special case of connections among units
"Network" \mathcal{E} unconventional sampling

Key features (Zhang and Patone, 2017)

- initial sample of nodes $\mathcal{\xi}$ observation procedure by edges

- sample graph defined in terms of edges included

NB. duality of incident relationship between edge and node

Graph: $G=(\mathcal{N}, A)=$ (Nodes, edges) [digraph by default] Initial sample of nodes: $s_{1} \subset \mathcal{N} \quad\left[p\left(s_{1}\right), \pi_{i}, \pi_{i j}\right.$, etc. $]$ Observation procedure: e.g.

- induced, incident (forward, backward, reciprocal), ancestral
- snowball propagation by same procedure or adaptive

Included edges $A_{s}=A\left(s_{2}\right):$ reference set $s_{2} \subseteq \mathcal{N} \times \mathcal{N}$ e.g. induced $s_{2}=s_{1} \times s_{1}$, inc. reciprocal $s_{2}=s_{1} \times \mathcal{N} \cup \mathcal{N} \times s_{1}$

Included nodes: $\mathcal{N}_{s}=s_{1} \cup \operatorname{Inc}\left(A_{s}\right)$
Sample Graph: $G_{S}=\left(\mathcal{N}_{s}, A_{s}\right)$

Illustration: G and $s_{1}=\{3,6,10\}, s_{a}=s_{1} \cup \alpha\left(s_{1}\right)$

(iii) $s_{1}=s_{a} \times s_{a}$

(iv)

T-stage snowball sampling

Initial seeds: $s_{1,0} \subset \mathcal{N}$ with successors $\alpha\left(s_{1,0}\right)$

- 1st-wave sample: $s_{1,1}=\alpha\left(s_{1,0}\right) \backslash s_{1,0}$ [seeds for 2 nd-wave]
- 2nd-wave sample: $s_{1,2}=\alpha\left(s_{1,1}\right) \backslash\left(s_{1,0} \cup s_{1,1}\right)$
- ... [if $s_{1, t}=\emptyset$, set $\left.s_{1, t+1}=\cdots=s_{1, T}=\emptyset\right]$
- T-th stage sample: $s_{1, T}=\alpha\left(s_{1, T-1}\right) \backslash\left(\bigcup_{h=0}^{T-1} s_{1, h}\right)$

Sample of seeds: $s_{1}=\bigcup_{t=0}^{T-1} s_{1, t}$
I. $s_{2}=s_{1} \times \mathcal{N} \mapsto A_{s}=\bigcup_{i \in s_{1}} \bigcup_{j \in \alpha_{i}} A_{i j}$
II. $s_{2}=s_{1} \times \mathcal{N} \cup \mathcal{N} \times s_{1} \mapsto A_{s}=\bigcup_{i \in s_{1}} \bigcup_{j \in \alpha_{i}}\left(A_{i j} \cup A_{j i}\right)$

Node sample: $\mathcal{N}_{s}=s_{1} \cup \alpha\left(s_{1}\right)$

Birnbaum \& Sirken (1965): Multiplicity sampling
Example: s_{1} of medical centres (U), access to patients (Ω)

BIG: bipartite incidence graph $G=(U, \Omega ; A)$

- bipartition (U, Ω) of \mathcal{N}, edges only between U and Ω
- e.g. $(U, \Omega)=$ (parents, children) in Lavalleè (2007)

Example: s_{1} of household (U), access to siblings (Ω)
E.g. sampling in projection-relation graph:

- projection edges from U to P (persons): $\mathcal{N}=U \cup P$
- relation edges $a_{i j}=a_{j i}$ for $i, j \in P$ if i and j are siblings

Can use BIG with $\mathcal{N}=U \cup \Omega$ [hypernode $k \in \Omega$]

Thompson (1990): Adaptive cluster sampling (ACS)

BIG sampling

Any representation of sampling in finite graph/network

- e.g. multiplicity/indirect sampling, "network" sampling, ACS
- e.g. induced, incident, snowball sampling (Frank 1971, ..., 2011)

BIG representation $G=(U, \Omega ; A)$ for estimation

- sampling units U, measurement motifs Ω, incidence edges A
- ancestral observation for design-based inference: need to know all the nodes in U that could lead to the observed motifs in Ω_{s}

NB. generalise the notion "multiplicity" (Birnbaum \& Sirken, 1965)

- solution: use $s_{2}^{*}=s_{1} \times s_{1}$ under T-stage snowball sampling
$\mathcal{C}_{q}=$ the set of all M of order $q, M \subset \mathcal{N}$ and $|M|=q$
Zhang \& Patone (2017) define q-th order $\boldsymbol{g r a p h}$ total

$$
\theta=\sum_{M \in \mathcal{C}_{q}} y(M)
$$

Graph parameter $=$ a function of graph totals [Similarly for network totals and network parameters] Motif : a node set M of specific characteristics, $M \subseteq \mathcal{N}$ NB. a motif $[M]$ may or may not have a fixed order, giving rise to graph totals with or without a given order
e.g. graph order $|\mathcal{N}|$: 1st-order, graph size $|A|$: 2nd-order e.g. $[M]=$ connected components, without fixed order

Example: Triads, i.e. $|M|=3$
The no. triads of size $3,2,1$, respectively, in undirected simple graph:

$$
\begin{aligned}
& \theta_{3,3}=\sum_{M \in \mathcal{C}_{3}} a_{i j} a_{j h} a_{i h} \quad[M=\{i, j, h\}] \\
& \theta_{3,2}=\sum_{M \in \mathcal{C}_{3}} a_{i j} a_{i h}\left(1-a_{j h}\right)+a_{i j} a_{j h}\left(1-a_{i h}\right)+a_{i h} a_{j h}\left(1-a_{i j}\right) \\
& \theta_{3,1}=\sum_{M \in \mathcal{C}_{3}} a_{i j}\left(1-a_{j h}\right)\left(1-a_{i h}\right)+a_{i h}\left(1-a_{i j}\right)\left(1-a_{j h}\right)+a_{j h}\left(1-a_{i j}\right)\left(1-a_{i h}\right)
\end{aligned}
$$

Relationship to the mean and variance of degrees (Frank, 1981):

$$
\begin{gathered}
\mu=\sum_{d=1}^{N} \frac{N_{d}}{N} d=\frac{2 R}{N} \quad Q=\sum_{d=1}^{N} d^{2} N_{d} \quad \sigma^{2}=\frac{Q}{N}-\mu^{2} \\
R=\frac{1}{N-2}\left(\theta_{3,1}+2 \theta_{3,2}+3 \theta_{3,3}\right) \\
Q=\frac{2}{N-1}\left(\theta_{3,1}+N \theta_{3,2}+3(N-1) \theta_{3,3}\right)
\end{gathered}
$$

BIG sampling: $\Omega=$ population set of $[M], \Omega_{s}=$ sample set of $[M]$
For convenience: enumerate the motifs as $k=1,2, \ldots$ in Ω and Ω_{s}
Yhat: HT-estimator of graph total $\theta=\sum_{k \in \Omega} y_{k}$

$$
\hat{\theta}_{y}=\sum_{k \in \Omega} \delta_{k} y_{k} / \pi_{(k)}
$$

$\delta_{k}=$ inclusion indicator and $\pi_{(k)}=$ inclusion probability of motif NB. $\pi_{(k)}$ for distinction to inclusion probability π_{j} of unit $j \in U$ NB. Under T-stage snowball sampling, a motif $[M]$ is observed

$$
\begin{aligned}
& \text { if } M \subseteq s_{1} \text {, where } M=\left\{i_{1}, \ldots, i_{q}\right\} \\
& \text { or if } M_{(h)} \subseteq s_{1} \text {, where } M_{(h)}=M \backslash\left\{i_{h}\right\} \text { and } 1 \leq h \leq q
\end{aligned}
$$

(Zhang and Patone, 2017)

Zhang and Patone (2017) show that

$$
\pi_{(k)}=\sum_{h=1}^{q} \operatorname{Pr}\left(M_{(h)} \subseteq s_{1}\right)-(k-1) \operatorname{Pr}\left(M \subseteq s_{1}\right)
$$

where e.g. $\operatorname{Pr}\left(M \subseteq s_{1}\right)=\pi_{\left(i_{1}\right)\left(i_{2}\right) \cdots\left(i_{q}\right)}$ is joint inclusion probability In terms of inclusion prob. in initial seed sample $s_{1,0}$, we have

$$
\pi_{\left(i_{1}\right)\left(i_{2}\right) \cdots\left(i_{q}\right)}=\sum_{L \subseteq M}(-1)^{|L|} \bar{\pi}(L)
$$

where $\bar{\pi}(L)$ is the (exclusion) probability of $L \cap s_{1}=\emptyset$:

$$
\bar{\pi}(L)=\operatorname{Pr}\left(R_{L} \cap s_{1,0}=\emptyset\right)=\bar{\pi}_{R_{L}}=\sum_{D \subseteq R_{L}}(-1)^{|D|} \pi_{D}
$$

where $R_{L}=\bigcup_{i \in L} R_{i}$ and R_{i} is the ancestors of i up to the $T-1$ steps, and π_{D} is joint inclusion probability of the nodes (in D) in $s_{1,0}$

Birnbaum and Sirken (1965): provided $\sum_{i \in U} P_{i k}=1, \forall k \in \Omega$,

$$
\theta=\sum_{k \in \Omega} y_{k}=\sum_{k \in \Omega}\left(\sum_{i \in U} P_{i k}\right) y_{k}=\sum_{i \in U}\left(\sum_{k \in \Omega} P_{i k} y_{k}\right)=\sum_{i \in U} z_{i}
$$

Zhat based on $z_{i}=\sum_{k \in \Omega} P_{i k} y_{k}$ with $P_{i k}$'s constant of s_{1} :

$$
\hat{\theta}_{z}=\sum_{i \in s_{1}} z_{i} / \pi_{i}=\sum_{i \in U} z_{i} \delta_{i} / \pi_{i}
$$

NB. Equal-share weight, given multiplicity $m_{k}=\left|A_{+k}\right|$ in BIG:

$$
P_{i k}=m_{k}^{-1} \quad \text { if }\left|A_{i k}\right|>0, \quad P_{i k}=0 \quad \text { otherwise }
$$

NB. pps-share weight: $P_{i k} \propto \pi_{i}$ if $\left|A_{i k}\right|>0, P_{i k}=0$ otherwise
NB. $\hat{\theta}_{z}$ much easier to calculate than $\hat{\theta}_{y}$ provided m_{k}

Example (Thompson, 1991): Two-stage ACS

	RRMSE (\%)		
	$\hat{s}_{1} \mid$	$\hat{\theta}_{S C S}$	$\hat{\theta}_{z}$
1	$\hat{\theta}_{y}$		
1	143.9	112.1	112.1
2	96.8	75.4	72.5
4	64.4	50.1	43.6
6	49.1	38.3	29.1
10	32.2	25.1	12.3

An example of graph sampling: SRS of $s_{1},\left|s_{1}\right|=3$

An example of graph sampling: SRS of $s_{1},\left|s_{1}\right|=3$

\# Triad types in a directed graph (Davis \& Leinhardt, 1972)		
g1	, 003 A, B, C	empty graph
g2	012 A--+B, C	graph with a single directed age
g3	$102 \mathrm{~A}+-+\mathrm{B}, \mathrm{C}$	graph with a mutual connection between two vertices
g4	021D A+--B--+C	out-star
g5	021 U A--+B+--C	in-star
g6	021C A--+B--+C	triple, directed line
g7	111D A+--+B+--C	triple
g8	111U A+--+B--+C	triple
g9	030 T A--+B+--C, A--+C	triple and transitive
g10	030C A+--B+--C, A--+C	triple
g11	201 A+--+B+--+C	triple
g12	120D A+--B--+C, A+--+C	triple and transitive
g13	120 U A--+B+--C, $A+\cdots+C$	triple and transitive
g14	120C $A--+B-+C, A+\cdots+C$	triple and transitive
g15	210 A--+B+--+C, $A+-+C$	triple and transitive
g16	300 A+--+B+--+C, $A+-+C$	triple, complete and transitive graph

An example of graph sampling: SRS of $s_{1},\left|s_{1}\right|=3$

$s_{2}^{*}=s_{1} \times s_{1}, s_{2}=s_{1} \times U \cup U \times s_{1}$				
		RRMSE $(\%)$		
Parameter	$\hat{\theta}_{y}\left(s_{2}^{*}\right)$	$\hat{\theta}_{y}\left(s_{2}\right)$	$\hat{\theta}_{z}^{e q}\left(s_{2}\right)$	
1st-order	Indegree	331.261	26.022	
3rd-order	Density	0.041	0.003	0.004
	Reciprocity	0.118	0.013	0.016
	g6	333.053	73.600	81.478
	g7	375.735	96.397	104.520
	g8	540.774	108.593	116.406
	g9	771.335	149.723	160.095
	g10	540.774	136.630	142.923
	g11	771.335	172.970	190.091
	g12	1095.445	211.943	230.090
	g13	1095.445	211.943	230.090
g14	540.774	122.138	131.251	
g15	771.335	172.970	190.091	
g16	1095.445	211.943	230.090	
Transitivity	0.084	0.028	0.028	

Example: Sector labour flows 2015Q1-2017Q1
$|\mathcal{N}|=263$
$|A|=31120, a_{i j} \in A$ if labour flow from i to j
Density $=0.45$, Reciprocity $=0.73$

$s_{2}^{*}=s_{1} \times s_{1}, s_{2}=s_{1} \times U \cup U \times s_{1}$						
	$\operatorname{RRMSE}(\%)$					
Parameter	$\left\|s_{1}\right\|=3$			$\left\|s_{1}\right\|=6$		
Indegree	75.01	31.76		47.84	22.12	
Mutual Edges	91.20	37.27	37.42	57.42	26.01	26.27
Density	75.01	31.76	31.89	47.84	22.12	22.34
Reciprocity	62.20	14.00	14.03	31.35	8.49	8.57

On relative efficiency

BIG sampling with replacement (WR)

- $p_{i}=\operatorname{Pr}\left(\delta_{i}=1\right)$ for $i \in U$
- $y_{\alpha_{i}}=y_{k}$ for $k=\alpha_{i}$ and $p_{(k)}=\sum_{i \in \beta_{k}} p_{i}=p_{\beta_{k}}$
- Hansen-Hurwitz (HH) estimators

$$
\tilde{\theta}_{z}=\frac{1}{n} \sum_{i=1}^{n} \frac{z_{i}}{p_{i}} \quad \text { and } \quad \tilde{\theta}_{y}=\frac{1}{n} \sum_{i=1}^{n} \frac{y_{\alpha_{i}}}{p_{\beta_{k}}}=\frac{1}{n} \sum_{i=1}^{n} \frac{y_{k}}{p_{(k)}}
$$

Result: $V\left(\tilde{\theta}_{z}\right) \geq V\left(\tilde{\theta}_{y}\right)$, where the equality holds if $P_{i k}=p_{(k)}^{-1} p_{i}$ for $i \in \beta_{k}$ and 0 otherwise.

NB. equal-probability $s_{1} \mapsto \tilde{\theta}_{z}$ with equal-share weights

BIG sampling without replacement (WOR)

- $\pi_{i}=\operatorname{Pr}\left(\delta_{i}=1\right)$ and $\pi_{i j}=\operatorname{Pr}\left(\delta_{i} \delta_{j}=1\right)$ for $i, j \in U$
- $\pi_{(k)}=\operatorname{Pr}\left(\delta_{k}=1\right)$ and $\pi_{(k)(l)}=\operatorname{Pr}\left(\delta_{k} \delta_{l}=1\right)$ for $k, l \in \Omega$

Result: For HT-estimators $\hat{\theta}_{y}$ and $\hat{\theta}_{z}$ with $P_{i k} \propto \pi_{i}$,

$$
\begin{aligned}
& V\left(\hat{\theta}_{z}\right)-V\left(\hat{\theta}_{y}\right)= \\
& \quad \sum_{k \neq l \in \Omega} \sum_{k} y_{k} y_{l}\left(\sum_{i \in \beta_{k}} \sum_{j \in \beta_{l}} \frac{\pi_{i j}}{\pi_{i} \pi_{j}} P_{i k} P_{j l}-\frac{\pi_{(k)(l)}}{\pi_{(k)} \pi_{(l)}}\right)
\end{aligned}
$$

NB. cluster sampling as special case $V\left(\hat{\theta}_{z}\right)=V\left(\hat{\theta}_{y}\right)$

To explore: scope of finite network sampling theory
More observation procedures, greater scope of application
Function of network totals of definite orders: yes
e.g. density, reciprocity, transitivity, etc.
e.g. "structural equivalence" ["similarity", Pearson corr.]

Parameters based on geodesic: feasible?
e.g. "closeness" centrality: inverse of mean of invserse geodesics

Measures based on fixed-point-equation: impossible?
e.g. Katz centrality: $\mathbf{x}_{N \times 1}=\alpha A \mathbf{x}+\boldsymbol{\beta}_{N \times 1}$
e.g. "regular equivalence" btw $i, j \in \mathcal{N}: \boldsymbol{\sigma}_{N \times N}=\alpha A \boldsymbol{\sigma}+\boldsymbol{I}_{N \times N}$
[1] Birnbaum, Z.W. and Sirken, M.G. (1965). Design of Sample Surveys to Estimate the Prevalence of IRareDiseases: Three Unbiased Estimates. Vital and Health Statistics, Ser. 2, No.11. Washington:Government Printing Office.
[2] Frank, O. (1971). Statistical inference in graphs. Stockholm: Försvarets forskningsanstalt.
[3] Frank, O. (1977a). Estimation of graph totals. Scandinavian Journal of Statistics, 4:81-89.
[4] Frank, O. (1977b). A note on Bernoulli sampling in graphs and Horvitz-Thompson estimation. Scandinavian Journal of Statistics, 4:178-180.
[5] Frank, O. (1977c) Survey sampling in graphs. Journal of Statistical Planning and Inference, 1(3):235-264.
[6] Frank, O. (1978). Estimation of the number of connected components in a graph by using a sampled subgraph. Scandinavian Journal of Statistics, 5:177-188.
[7] Frank, O. (1979). Sampling and estimation in large social networks. Social networks, 1(1):91-101.
[8] Frank, O. (1980a). Estimation of the number of vertices of different degrees in a graph. Journal of Statistical Planning and Inference, 4(1):45-50, 1980.
[9] Frank, O. (1980b). Sampling and inference in a population graph. International Statistical Review/Revue Internationale de Statistique, 48:33-41.
[10] Frank, O. (1981). A survey of statistical methods for graph analysis. Sociological methodology, 12:110-155.
[11] Frank, O. (2011). Survey sampling in networks. The SAGE Handbook of Social Network Analysis, pages 389-403.
[12] Frank O. and Snijders T. (1994). Estimating the size of hidden populations using snowball sampling. Journal of Official Statistics, 10:53-53.
[13] Goldenberg, A., Zheng, A.X., Fienberg, S.E. and Airoldi, E.M. (2010). A Survey of Statistical Network Models. Foundations and Trends in Machine Learning, 2:129-233.
[14] Goodman, L.A. (1961). Snowball sampling. Annals of Mathematical Statistics, 32:148170.
[15] Klovdahl, A. S. (1989). Urban social networks: Some methodological problems and possibilities. In M. Kochen (ed.) The Small World. Norwood, NJ: Ablex Publishing, pp. 176-210.
[16] Lavalleè, P. (2007). Indirect Sampling. Springer.
[17] Newman, M.E.J. (2010). Networks: An Introduction. Oxford University Press.
[18] Sirken, M.G. (2005). Network Sampling. In Encyclopedia of Biostatistics, John Wiley \& Sons, Ltd. DOI: 10.1002/0470011815.b2a16043
[19] Snijders, T. A. B. (1992). Estimation on the basis of snowball samples: How to weight. Bulletin de Methodologie Sociologique, 36:59-70.
[20] Thompson, S.K. (1990). Adaptive cluster sampling. Journal of the American Statistical Association, 85:1050-1059.
[21] Thompson, S. K. (1991). Adaptive cluster sampling: Designs with primary and secondary units. Biometrics, 47:1103-1115.

