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Finite population sampling

List-based multistage sampling:

NB. a special case of connections among units
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“Network” & unconventional sampling
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A unified definition of Graph Sampling

Key features (Zhang and Patone, 2017)

• initial sample of nodes & observation procedure by edges

• sample graph defined in terms of edges included

NB. duality of incident relationship between edge and node
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A unified definition of Graph Sampling

Graph: G = (N , A) = (Nodes, edges) [digraph by default]

Initial sample of nodes: s1 ⊂ N [ p(s1), πi, πij, etc. ]

Observation procedure: e.g.

• induced, incident (forward, backward, reciprocal), ancestral

• snowball propagation by same procedure or adaptive

Included edges As = A(s2): reference set s2 ⊆ N ×N

e.g. induced s2 = s1 × s1, inc. reciprocal s2 = s1 ×N ∪N × s1

Included nodes: Ns = s1 ∪ Inc(As)

Sample Graph : Gs = (Ns, As)
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Illustration: G and s1 = {3, 6, 10}, sa = s1 ∪ α(s1)

(iii) s1 = sa × sa
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T -stage snowball sampling

Initial seeds : s1,0 ⊂ N with successors α(s1,0)

• 1st-wave sample: s1,1 = α(s1,0) \ s1,0 [seeds for 2nd-wave]

• 2nd-wave sample: s1,2 = α(s1,1) \ (s1,0 ∪ s1,1)

• ... [ if s1,t = ∅, set s1,t+1 = · · · = s1,T = ∅ ]

• T -th stage sample: s1,T = α(s1,T−1) \
( T−1⋃
h=0

s1,h

)
Sample of seeds : s1 =

⋃T−1
t=0 s1,t

I. s2 = s1 ×N 7→ As =
⋃
i∈s1

⋃
j∈αiAij

II. s2 = s1 ×N ∪N × s1 7→ As =
⋃
i∈s1

⋃
j∈αi(Aij ∪ Aji)

Node sample: Ns = s1 ∪ α(s1)
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Birnbaum & Sirken (1965): Multiplicity sampling

Example: s1 of medical centres (U), access to patients (Ω)

BIG: bipartite incidence graph G = (U,Ω;A)

• bipartition (U,Ω) of N , edges only between U and Ω

• e.g. (U,Ω) = (parents, children) in Lavalleè (2007)
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Sirken (2005): Network sampling

Example: s1 of household (U), access to siblings (Ω)

E.g. sampling in projection-relation graph:

• projection edges from U to P (persons): N = U ∪ P
• relation edges aij = aji for i, j ∈ P if i and j are siblings

Can use BIG with N = U ∪ Ω [ hypernode k ∈ Ω ]
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Thompson (1990): Adaptive cluster sampling (ACS)
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BIG sampling

Any representation of sampling in finite graph/network

• e.g. multiplicity/indirect sampling, “network” sampling, ACS

• e.g. induced, incident, snowball sampling (Frank 1971, ..., 2011)

BIG representation G = (U,Ω;A) for estimation

• sampling units U , measurement motifs Ω, incidence edges A

• ancestral observation for design-based inference : need to know

all the nodes in U that could lead to the observed motifs in Ωs

NB. generalise the notion “multiplicity” (Birnbaum & Sirken, 1965)

• solution: use s∗2 = s1 × s1 under T -stage snowball sampling
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Motif... graph total... network parameter

Cq = the set of all M of order q, M ⊂ N and |M | = q

Zhang & Patone (2017) define q-th order graph total

θ =
∑
M∈Cq

y(M)

Graph parameter = a function of graph totals

[Similarly for network totals and network parameters]

Motif : a node set M of specific characteristics, M ⊆ N
NB. a motif [M ] may or may not have a fixed order, giving

rise to graph totals with or without a given order

e.g. graph order |N |: 1st-order, graph size |A|: 2nd-order

e.g. [M ] = connected components, without fixed order
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Example: Triads, i.e. |M | = 3

The no. triads of size 3, 2, 1, respectively, in undirected simple graph:

θ3,3 =
∑
M∈C3

aijajhaih [M = {i, j, h}]

θ3,2 =
∑
M∈C3

aijaih(1− ajh) + aijajh(1− aih) + aihajh(1− aij)

θ3,1 =
∑
M∈C3

aij(1− ajh)(1− aih) + aih(1− aij)(1− ajh) + ajh(1− aij)(1− aih)

Relationship to the mean and variance of degrees (Frank, 1981):

µ =

N∑
d=1

Nd

N
d =

2R

N
Q =

N∑
d=1

d2Nd σ2 =
Q

N
− µ2

R =
1

N − 2

(
θ3,1 + 2θ3,2 + 3θ3,3

)
Q =

2

N − 1

(
θ3,1 + Nθ3,2 + 3(N − 1)θ3,3

)
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Two network HT-estimators

BIG sampling: Ω = population set of [M ], Ωs = sample set of [M ]

For convenience: enumerate the motifs as k = 1, 2, ... in Ω and Ωs

Yhat: HT-estimator of graph total θ =
∑

k∈Ω yk

θ̂y =
∑
k∈Ω

δkyk/π(k)

δk = inclusion indicator and π(k) = inclusion probability of motif

NB. π(k) for distinction to inclusion probability πj of unit j ∈ U

NB. Under T -stage snowball sampling, a motif [M ] is observed

if M ⊆ s1, where M = {i1, ..., iq}

or if M(h) ⊆ s1, where M(h) = M \ {ih} and 1 ≤ h ≤ q

(Zhang and Patone, 2017)
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Two network HT-estimators

Zhang and Patone (2017) show that

π(k) =

q∑
h=1

Pr
(
M(h) ⊆ s1

)
− (k − 1)Pr

(
M ⊆ s1

)
where e.g. Pr

(
M ⊆ s1

)
= π(i1)(i2)···(iq) is joint inclusion probability

In terms of inclusion prob. in initial seed sample s1,0, we have

π(i1)(i2)···(iq) =
∑
L⊆M

(−1)|L|π̄(L),

where π̄(L) is the (exclusion) probability of L ∩ s1 = ∅:

π̄(L) = Pr(RL ∩ s1,0 = ∅) = π̄RL =
∑
D⊆RL

(−1)|D|πD

where RL =
⋃
i∈L

Ri and Ri is the ancestors of i up to the T − 1 steps,

and πD is joint inclusion probability of the nodes (in D) in s1,0
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Two network HT-estimators

Birnbaum and Sirken (1965): provided
∑

i∈U Pik = 1, ∀k ∈ Ω,

θ =
∑
k∈Ω

yk =
∑
k∈Ω

(∑
i∈U

Pik
)
yk =

∑
i∈U

(∑
k∈Ω

Pikyk
)

=
∑
i∈U

zi

Zhat based on zi =
∑

k∈Ω Pikyk with Pik’s constant of s1:

θ̂z =
∑
i∈s1

zi/πi =
∑
i∈U

ziδi/πi

NB. Equal-share weight, given multiplicity mk = |A+k| in BIG:

Pik = m−1
k if |Aik| > 0, Pik = 0 otherwise

NB. pps-share weight : Pik ∝ πi if |Aik| > 0, Pik = 0 otherwise

NB. θ̂z much easier to calculate than θ̂y provided mk
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Example (Thompson, 1991): Two-stage ACS

RRMSE (%)

|s1| θ̂SCS θ̂eqz θ̂y
1 143.9 112.1 112.1
2 96.8 75.4 72.5
4 64.4 50.1 43.6
6 49.1 38.3 29.1
10 32.2 25.1 12.3
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An example of graph sampling: SRS of s1, |s1| = 3
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An example of graph sampling: SRS of s1, |s1| = 3
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An example of graph sampling: SRS of s1, |s1| = 3

s∗2 = s1 × s1, s2 = s1 × U ∪ U × s1

RRMSE (%)

Parameter θ̂y(s
∗
2) θ̂y(s2) θ̂eqz (s2)

1st-order Indegree 331.261 26.022
2nd-order Density 0.041 0.003 0.004

Reciprocity 0.118 0.013 0.016
3rd-order g6 333.053 73.600 81.478

g7 375.735 96.397 104.520
g8 540.774 108.593 116.406
g9 771.335 149.723 160.095
g10 540.774 136.630 142.923
g11 771.335 172.970 190.091
g12 1 095.445 211.943 230.090
g13 1 095.445 211.943 230.090
g14 540.774 122.138 131.251
g15 771.335 172.970 190.091
g16 1 095.445 211.943 230.090
Transitivity 0.084 0.028 0.028
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Example: Sector labour flows 2015Q1-2017Q1

|N | = 263

|A| = 31120, aij ∈ A if labour flow from i to j

Density = 0.45, Reciprocity = 0.73

s∗2 = s1 × s1, s2 = s1 × U ∪ U × s1

RRMSE (%)

|s1| = 3 |s1| = 6

Parameter θ̂y(s
∗
2) θ̂y(s2) θ̂eqz (s2) θ̂y(s

∗
2) θ̂y(s2) θ̂eqz (s2)

Indegree 75.01 31.76 47.84 22.12

Mutual Edges 91.20 37.27 37.42 57.42 26.01 26.27

Density 75.01 31.76 31.89 47.84 22.12 22.34

Reciprocity 62.20 14.00 14.03 31.35 8.49 8.57
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On relative efficiency

BIG sampling with replacement (WR)

• pi = Pr(δi = 1) for i ∈ U

• yαi = yk for k = αi and p(k) =
∑

i∈βk pi = pβk

• Hansen-Hurwitz (HH) estimators

θ̃z =
1

n

n∑
i=1

zi
pi

and θ̃y =
1

n

n∑
i=1

yαi
pβk

=
1

n

n∑
i=1

yk
p(k)

Result: V (θ̃z) ≥ V (θ̃y), where the equality holds if

Pik = p−1
(k)
pi for i ∈ βk and 0 otherwise. �

NB. equal-probability s1 7→ θ̃z with equal-share weights

22



On relative efficiency

BIG sampling without replacement (WOR)

• πi = Pr(δi = 1) and πij = Pr(δiδj = 1) for i, j ∈ U

• π(k) = Pr(δk = 1) and π(k)(l) = Pr(δkδl = 1) for k, l ∈ Ω

Result: For HT-estimators θ̂y and θ̂z with Pik ∝ πi,

V (θ̂z)− V (θ̂y) =∑∑
k 6=l∈Ω

ykyl

(∑
i∈βk

∑
j∈βl

πij
πiπj

PikPjl −
π(k)(l)

π(k)π(l)

)

NB. cluster sampling as special case V (θ̂z) = V (θ̂y)
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To explore: scope of finite network sampling theory

More observation procedures, greater scope of application

Function of network totals of definite orders: yes

e.g. density, reciprocity, transitivity, etc.

e.g. “structural equivalence” [“similarity”, Pearson corr.]

Parameters based on geodesic: feasible?

e.g. “closeness” centrality: inverse of mean of invserse geodesics

Measures based on fixed-point-equation: impossible?

e.g. Katz centrality: xN×1 = αAx + βN×1

e.g. “regular equivalence” btw i, j ∈ N : σN×N = αAσ + IN×N
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