Sampling and design-based inference in finite networks

Li-Chun Zhang^{1,2,3} and Melike Oguz-Alper²

¹University of Southampton (L.Zhang@soton.ac.uk) ²Statistisk sentralbyraa, Norway ³Universitetet i Oslo List-based multistage sampling:

NB. a special case of connections among units

Key features (Zhang and Patone, 2017)

 \bullet initial sample of nodes ${\mathscr E}$ observation procedure by edges

• **sample graph** defined in terms of edges included

NB. duality of incident relationship between edge and node

A unified definition of Graph Sampling

Graph: $G = (\mathcal{N}, A) = (\text{Nodes, edges})$ [digraph by default] Initial sample of nodes: $s_1 \subset \mathcal{N}$ [$p(s_1), \pi_i, \pi_{ij}$, etc.] Observation procedure: e.g.

- induced, incident (forward, backward, reciprocal), ancestral
- snowball propagation by same procedure or adaptive

Included edges $A_s = A(s_2)$: reference set $s_2 \subseteq \mathcal{N} \times \mathcal{N}$ e.g. induced $s_2 = s_1 \times s_1$, inc. reciprocal $s_2 = s_1 \times \mathcal{N} \cup \mathcal{N} \times s_1$

Included nodes: $\mathcal{N}_s = s_1 \cup \text{Inc}(A_s)$ Sample Graph: $G_s = (\mathcal{N}_s, A_s)$

Initial seeds: $s_{1,0} \subset \mathcal{N}$ with successors $\alpha(s_{1,0})$

- 1st-wave sample: $s_{1,1} = \alpha(s_{1,0}) \setminus s_{1,0}$ [seeds for 2nd-wave]
- 2nd-wave sample: $s_{1,2} = \alpha(s_{1,1}) \setminus (s_{1,0} \cup s_{1,1})$

• ... [if
$$s_{1,t} = \emptyset$$
, set $s_{1,t+1} = \cdots = s_{1,T} = \emptyset$]

• T-th stage sample:
$$s_{1,T} = \alpha(s_{1,T-1}) \setminus \left(\bigcup_{h=0}^{T-1} s_{1,h}\right)$$

Sample of seeds: $s_1 = \bigcup_{t=0}^{T-1} s_{1,t}$

I.
$$s_2 = s_1 \times \mathcal{N} \mapsto A_s = \bigcup_{i \in s_1} \bigcup_{j \in \alpha_i} A_{ij}$$

II.
$$s_2 = s_1 \times \mathcal{N} \cup \mathcal{N} \times s_1 \mapsto A_s = \bigcup_{i \in s_1} \bigcup_{j \in \alpha_i} (A_{ij} \cup A_{ji})$$

Node sample: $\mathcal{N}_s = s_1 \cup \alpha(s_1)$

Birnbaum & Sirken (1965): Multiplicity sampling

Example: s_1 of medical centres (U), access to patients (Ω)

BIG: bipartite incidence graph $G = (U, \Omega; A)$

- bipartition (U, Ω) of \mathcal{N} , edges only between U and Ω
- e.g. $(U, \Omega) = (\text{parents, children})$ in Lavalleè (2007)

Sirken (2005): Network sampling

Example: s_1 of household (U), access to siblings (Ω)

E.g. sampling in *projection-relation graph*:

- projection edges from U to P (persons): $\mathcal{N} = U \cup P$
- relation edges $a_{ij} = a_{ji}$ for $i, j \in P$ if i and j are siblings

Can use BIG with $\mathcal{N} = U \cup \Omega$ [hypernode $k \in \Omega$]

Thompson (1990): Adaptive cluster sampling (ACS)

Any representation of *sampling* in finite graph/network

- \bullet e.g. multiplicity/indirect sampling, "network" sampling, ACS
- e.g. induced, incident, snowball sampling (Frank 1971, ..., 2011)

BIG representation $G = (U, \Omega; A)$ for *estimation*

- sampling units U, measurement **motifs** Ω , incidence edges A
- ancestral observation for design-based inference: need to know all the nodes in U that could lead to the observed motifs in Ω_s NB. generalise the notion "multiplicity" (Birnbaum & Sirken, 1965)
- solution: use $s_2^* = s_1 \times s_1$ under *T*-stage snowball sampling

Motif... graph total... network parameter

 C_q = the set of all M of order $q, M \subset \mathcal{N}$ and |M| = qZhang & Patone (2017) define q-th order **graph total**

$$\theta = \sum_{M \in \mathcal{C}_q} y(M)$$

Graph parameter = a function of graph totals [Similarly for network totals and network parameters] **Motif**: a node set M of specific characteristics, $M \subseteq \mathcal{N}$ NB. a motif [M] may or may not have a fixed order, giving rise to graph totals with or without a given order e.g. graph order $|\mathcal{N}|$: 1st-order, graph size |A|: 2nd-order e.g. [M] = connected components, without fixed order

Example: Triads, i.e. |M| = 3

The no. triads of size 3, 2, 1, respectively, in undirected simple graph:

$$\begin{split} \theta_{3,3} &= \sum_{M \in \mathcal{C}_3} a_{ij} a_{jh} a_{ih} & [M = \{i, j, h\}] \\ \theta_{3,2} &= \sum_{M \in \mathcal{C}_3} a_{ij} a_{ih} (1 - a_{jh}) + a_{ij} a_{jh} (1 - a_{ih}) + a_{ih} a_{jh} (1 - a_{ij}) \\ \theta_{3,1} &= \sum_{M \in \mathcal{C}_3} a_{ij} (1 - a_{jh}) (1 - a_{ih}) + a_{ih} (1 - a_{ij}) (1 - a_{jh}) + a_{jh} (1 - a_{ij}) (1 - a_{ih}) \end{split}$$

Relationship to the mean and variance of degrees (Frank, 1981):

$$\mu = \sum_{d=1}^{N} \frac{N_d}{N} d = \frac{2R}{N} \qquad Q = \sum_{d=1}^{N} d^2 N_d \qquad \sigma^2 = \frac{Q}{N} - \mu^2$$
$$R = \frac{1}{N-2} (\theta_{3,1} + 2\theta_{3,2} + 3\theta_{3,3})$$
$$Q = \frac{2}{N-1} (\theta_{3,1} + N\theta_{3,2} + 3(N-1)\theta_{3,3})$$

BIG sampling: Ω = population set of [M], Ω_s = sample set of [M]For convenience: enumerate the motifs as k = 1, 2, ... in Ω and Ω_s **Yhat**: HT-estimator of graph total $\theta = \sum_{k \in \Omega} y_k$

$$\hat{ heta}_y = \sum_{k \in \Omega} \delta_k y_k / \pi_{(k)}$$

 δ_k = inclusion indicator and $\pi_{(k)}$ = inclusion probability of motif NB. $\pi_{(k)}$ for distinction to inclusion probability π_j of unit $j \in U$ NB. Under *T*-stage snowball sampling, a motif [*M*] is observed

if $M \subseteq s_1$, where $M = \{i_1, ..., i_q\}$

or if $M_{(h)} \subseteq s_1$, where $M_{(h)} = M \setminus \{i_h\}$ and $1 \le h \le q$

(Zhang and Patone, 2017)

Zhang and Patone (2017) show that

$$\pi_{(k)} = \sum_{h=1}^{q} \Pr\left(M_{(h)} \subseteq s_1\right) - (k-1)\Pr\left(M \subseteq s_1\right)$$

where e.g. $\Pr(M \subseteq s_1) = \pi_{(i_1)(i_2)\cdots(i_q)}$ is joint inclusion probability

In terms of inclusion prob. in initial seed sample $s_{1,0}$, we have

$$\pi_{(i_1)(i_2)\cdots(i_q)} = \sum_{L\subseteq M} (-1)^{|L|} \bar{\pi}(L),$$

where $\bar{\pi}(L)$ is the (exclusion) probability of $L \cap s_1 = \emptyset$:

$$\bar{\pi}(L) = \Pr(R_L \cap s_{1,0} = \emptyset) = \bar{\pi}_{R_L} = \sum_{D \subseteq R_L} (-1)^{|D|} \pi_D$$

where $R_L = \bigcup_{i \in L} R_i$ and R_i is the ancestors of *i* up to the T-1 steps, and π_D is joint inclusion probability of the nodes (in *D*) in $s_{1,0}$ Birnbaum and Sirken (1965): provided $\sum_{i \in U} P_{ik} = 1, \forall k \in \Omega$,

$$\theta = \sum_{k \in \Omega} y_k = \sum_{k \in \Omega} \left(\sum_{i \in U} P_{ik} \right) y_k = \sum_{i \in U} \left(\sum_{k \in \Omega} P_{ik} y_k \right) = \sum_{i \in U} z_i$$

Zhat based on $\overline{z_i = \sum_{k \in \Omega} P_{ik} y_k}$ with P_{ik} 's constant of s_1 :

$$\hat{\theta}_z = \sum_{i \in s_1} z_i / \pi_i = \sum_{i \in U} z_i \delta_i / \pi_i$$

NB. Equal-share weight, given multiplicity $m_k = |A_{+k}|$ in BIG: $P_{ik} = m_k^{-1}$ if $|A_{ik}| > 0$, $P_{ik} = 0$ otherwise

NB. *pps-share weight*: $P_{ik} \propto \pi_i$ if $|A_{ik}| > 0$, $P_{ik} = 0$ otherwise NB. $\hat{\theta}_z$ much easier to calculate than $\hat{\theta}_y$ provided m_k

An example of graph sampling: SRS of s_1 , $|s_1| = 3$

#								
# Triad types in a directed graph (Davis & Leinhardt, 1972)								
#								
g1	003 A,B,C	empty graph						
g2	012 A+B,C	graph with a single directed age						
g3	102 A++B,C	graph with a mutual connection between two vertices						
g4	021D A+B+C	out-star						
g5	021U A+B+C	in-star						
g6	021C A+B+C	triple, directed line						
g7	111D A++B+C	triple						
g8	111U A++B+C	triple						
g9	030T A+B+C, A+C	triple and transitive						
g10	030C A+B+C, A+C	triple						
g11	201 A++B++C	triple						
g12	120D A+B+C, A++C	triple and transitive						
g13	120U A+B+C, A++C	triple and transitive						
g14	120C A+B+C, A++C	triple and transitive						
g15	210 A+B++C, A++C	triple and transitive						
g16	300 A++B++C, A++C	triple, complete and transitive graph						
#								

$s_2^* = s_1 \times s_1, s_2 = s_1 \times U \cup U \times s_1$									
		RRMSE (%)							
	Parameter	$\hat{ heta}_y(s_2^*)$	$\hat{ heta}_y(s_2)$	$\hat{ heta}_z^{eq}(s_2)$					
1st-order	1st-order Indegree		26.022						
2nd-order	Density	0.041	0.003	0.004					
	Reciprocity	0.118	0.013	0.016					
3rd-order	g6	333.053	73.600	81.478					
	g7	375.735	96.397	104.520					
	g8	540.774	108.593	116.406					
	g9	771.335	149.723	160.095					
	g10	540.774	136.630	142.923					
	g11	771.335	172.970	190.091					
	g12	1095.445	211.943	230.090					
	g13	1095.445	211.943	230.090					
	g14	540.774	122.138	131.251					
	g15	771.335	172.970	190.091					
	g16	1095.445	211.943	230.090					
	Transitivity	0.084	0.028	0.028					

An example of graph sampling: SRS of s_1 , $|s_1| = 3$

Example: Sector labour flows 2015Q1-2017Q1										
$ \mathcal{N} = 263$										
$ A = 31120, a_{ij} \in A$ if labour flow from i to j										
Density = 0.45 , Reciprocity = 0.73										
$s_2^* = s_1 \times s_1, s_2 = s_1 \times U \cup U \times s_1$										
	RRMSE (%)									
	$ s_1 = 3$		$ s_1 = 6$							
Parameter	$\hat{ heta}_y(s_2^*)$	$\hat{ heta}_y(s_2)$	$\hat{ heta}_z^{eq}(s_2)$	$\hat{ heta}_y(s_2^*)$	$\hat{ heta}_y(s_2)$	$\hat{ heta}_z^{eq}(s_2)$				
Indegree	75.01	31.76		47.84	22.12					
Mutual Edges	91.20	37.27	37.42	57.42	26.01	26.27				
Density	75.01	31.76	31.89	47.84	22.12	22.34				
Reciprocity	62.20	14.00	14.03	31.35	8.49	8.57				

BIG sampling with replacement (WR)

•
$$p_i = \Pr(\delta_i = 1)$$
 for $i \in U$

•
$$y_{\alpha_i} = y_k$$
 for $k = \alpha_i$ and $p_{(k)} = \sum_{i \in \beta_k} p_i = p_{\beta_k}$

• Hansen-Hurwitz (HH) estimators

$$\tilde{\theta}_z = \frac{1}{n} \sum_{i=1}^n \frac{z_i}{p_i}$$
 and $\tilde{\theta}_y = \frac{1}{n} \sum_{i=1}^n \frac{y_{\alpha_i}}{p_{\beta_k}} = \frac{1}{n} \sum_{i=1}^n \frac{y_k}{p_{(k)}}$

Result: $V(\tilde{\theta}_z) \geq V(\tilde{\theta}_y)$, where the equality holds if $P_{ik} = p_{(k)}^{-1} p_i$ for $i \in \beta_k$ and 0 otherwise. \Box

NB. equal-probability $s_1 \mapsto \tilde{\theta}_z$ with equal-share weights

BIG sampling without replacement (WOR)

•
$$\pi_i = \Pr(\delta_i = 1)$$
 and $\pi_{ij} = \Pr(\delta_i \delta_j = 1)$ for $i, j \in U$

•
$$\pi_{(k)} = \Pr(\delta_k = 1)$$
 and $\pi_{(k)(l)} = \Pr(\delta_k \delta_l = 1)$ for $k, l \in \Omega$

Result: For HT-estimators $\hat{\theta}_y$ and $\hat{\theta}_z$ with $P_{ik} \propto \pi_i$,

$$\begin{split} V(\hat{\theta}_z) - V(\hat{\theta}_y) &= \\ \sum_{k \neq l \in \Omega} \sum_{y_k y_l} \Big(\sum_{i \in \beta_k} \sum_{j \in \beta_l} \frac{\pi_{ij}}{\pi_i \pi_j} P_{ik} P_{jl} - \frac{\pi_{(k)(l)}}{\pi_{(k)} \pi_{(l)}} \Big) \end{split}$$

NB. cluster sampling as special case $V(\hat{\theta}_z) = V(\hat{\theta}_y)$

To explore: scope of finite network sampling theory

More observation procedures, greater scope of application Function of network totals of definite orders: **yes**

e.g. density, reciprocity, transitivity, etc.

e.g. "structural equivalence" ["similarity", Pearson corr.]

Parameters based on geodesic: feasible?

e.g. "closeness" centrality: inverse of mean of invserse geodesics

Measures based on fixed-point-equation: **impossible**?

e.g. Katz centrality: $\mathbf{x}_{N \times 1} = \alpha A \mathbf{x} + \boldsymbol{\beta}_{N \times 1}$

e.g. "regular equivalence" btw $i, j \in \mathcal{N}$: $\boldsymbol{\sigma}_{N \times N} = \alpha A \boldsymbol{\sigma} + \boldsymbol{I}_{N \times N}$

- Birnbaum, Z.W. and Sirken, M.G. (1965). Design of Sample Surveys to Estimate the Prevalence of IRareDiseases: Three Unbiased Estimates. Vital and Health Statistics, Ser. 2, No.11. Washington:Government Printing Office.
- [2] Frank, O. (1971). *Statistical inference in graphs*. Stockholm: Försvarets forskningsanstalt.
- [3] Frank, O. (1977a). Estimation of graph totals. Scandinavian Journal of Statistics, 4:81–89.
- [4] Frank, O. (1977b). A note on Bernoulli sampling in graphs and Horvitz-Thompson estimation. *Scandinavian Journal of Statistics*, 4:178–180.
- [5] Frank, O. (1977c) Survey sampling in graphs. *Journal of Statistical Planning and Inference*, 1(3):235–264.
- [6] Frank, O. (1978). Estimation of the number of connected components in a graph by using a sampled subgraph. *Scandinavian Journal of Statistics*, 5:177–188.
- [7] Frank, O. (1979). Sampling and estimation in large social networks. *Social networks*, 1(1):91–101.
- [8] Frank, O. (1980a). Estimation of the number of vertices of different degrees in a graph. Journal of Statistical Planning and Inference, 4(1):45–50, 1980.
- [9] Frank, O. (1980b). Sampling and inference in a population graph. International Statistical Review/Revue Internationale de Statistique, 48:33-41.
- [10] Frank, O. (1981). A survey of statistical methods for graph analysis. Sociological methodology, 12:110–155.

- [11] Frank, O. (2011). Survey sampling in networks. *The SAGE Handbook of Social Network* Analysis, pages 389–403.
- [12] Frank O. and Snijders T. (1994). Estimating the size of hidden populations using snowball sampling. *Journal of Official Statistics*, 10:53–53.
- [13] Goldenberg, A., Zheng, A.X., Fienberg, S.E. and Airoldi, E.M. (2010). A Survey of Statistical Network Models. Foundations and Trends in Machine Learning, 2:129–233.
- [14] Goodman, L.A. (1961). Snowball sampling. Annals of Mathematical Statistics, 32:148– 170.
- [15] Klovdahl, A. S. (1989). Urban social networks: Some methodological problems and possibilities. In M. Kochen (ed.) *The Small World*. Norwood, NJ: Ablex Publishing, pp. 176–210.
- [16] Lavalleè, P. (2007). *Indirect Sampling*. Springer.
- [17] Newman, M.E.J. (2010). Networks: An Introduction. Oxford University Press.
- [18] Sirken, M.G. (2005). Network Sampling. In Encyclopedia of Biostatistics, John Wiley & Sons, Ltd. DOI: 10.1002/0470011815.b2a16043
- [19] Snijders, T. A. B. (1992). Estimation on the basis of snowball samples: How to weight. Bulletin de Methodologie Sociologique, 36:59–70.
- [20] Thompson, S.K. (1990). Adaptive cluster sampling. Journal of the American Statistical Association, 85:1050–1059.
- [21] Thompson, S. K. (1991). Adaptive cluster sampling: Designs with primary and secondary units. *Biometrics*, 47:1103–1115.