Coherence studies in time series

Julija Janeiko Vytautas Panknas

Vilnius Gediminas Technical University

Workshop of Baltic-Nordic-Ukrainian Network on Survey Statistics August 21-24, 2018, Jelgava, Latvia

1 / 29

Introduction

- 2 Theoretical background
- 3 Practical coherence application

- Why do we need coherence?
- What does it mean in Official statistics and time series?

Suppose we have two finite stationary times series $x_t = x_1, x_2, ..., x_n$ and $y_t = y_1, y_2, ..., y_n$. Their empirical cross – covariance function is defined as

$$\gamma_{xy} = \frac{1}{n} \sum_{t=1}^{n} \left((x_{t+h} - \bar{x})(y_t - \bar{y}) \right),$$

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

$$t = 1, 2, \dots, n, \quad h = 0, 1, 2, \dots, n,$$

$$x_{t+n} = x_t, \quad y_{t+n} = y_t.$$

Discrete time functions ϕ_j and ϕ_k are *orthogonal* if

$$\sum_{t\in D}\phi_k(t)\phi_j^*(t)\begin{cases}=0, & k\neq j,\\ \neq 0, & k=j.\end{cases}$$

In our case

$$\sum_{t=1}^{n} e^{j\frac{2\pi kt}{n}} e^{-j\frac{2\pi kt}{n}} \begin{cases} = 0, & k \neq j, \\ \neq 0, & k = j. \end{cases}$$

5 / 29

$$\gamma_{xy}(h) = \sum_{k=-[n/2]+1}^{[n/2]} c_k e^{i\omega_k t}$$

with the frequencies $\omega_k = \frac{2\pi k}{n} \in [-\pi, \pi]$. Fourier transformation is applied to cross - covariance function. Frequencies $\omega_k = \frac{2\pi k}{n}$ are called Fourier frequencies.

6 / 29

The Fourier coefficients c_k (cross-spectrum) are calculated using the formula

$$c_k = \frac{1}{n} \sum_{h=1}^n \gamma_{xy}(h) e^{-i\omega_k t}, \quad k = -\left[\frac{n}{2}\right] + 1, ..., 0, 1, ..., \left[\frac{n}{2}\right].$$

These values are complex.

Energy of cross - covariance function $\gamma_{xy}(h)$ is defined as

$$\textit{Energy} = \sum_{h=1}^{n} \gamma_{xy}(h)$$

and the power of cross-covariance

Power =
$$\frac{1}{n} \sum_{h=1}^{n} \gamma_{xy}(h) = \sum_{k=-[n/2]+1}^{[n/2]} c_k^2.$$

The coefficients $f_0 = c_0^2$, $f_{[n/2]} = |c_{[n/2]}|^2$, $f_k = |c_{-k}|^2 + |c_k|^2 = 2|c_k|^2$, k = 0, 1, 2, ..., [n/2] are interpreted as the contribution of this frequency to the total power. Points (w_k, f_k) plotted as a function is called a periodogram.

A measure of strength of two processes relation at the w_k frequency is coherence coefficient defined as

$$\cosh_{xy}^2(\omega_k) = \frac{|f_{xy}(\omega_k)|^2}{f_{xx}(\omega_k)f_{yy}(\omega_k)}.$$
(1)

where $f_{xx}(\omega_k)$ and $f_{yy}(\omega_k)$ are the individual spectra of the series x_t and y_t , respectively; $f_{xy}(\omega_k) = f_k$.

Points (w_k, coh^2) plotted as a function is denoted as squared coherence function.

Let us all remember conventional Pearson's correlation coefficient determined as

ρ

$$_{xy}^{2} = \frac{\sigma_{yx}^{2}}{\sigma_{x}^{2}\sigma_{y}^{2}},$$
(2)

where σ_x^2 and σ_y^2 are variances of random variables X and Y and $\sigma_{yx} = \sigma_{xy}$ is their covariance.

Practical coherence application

- Example 1: LFU and RSI
- Example 2: RRS and RSI
- Example 3: LFU and EU
- Example 4: LFE and EMP

11 / 29

- Statistics Lithuania, Labor force survey data:
 - number of employed (LFE) (in thousands);
 - number of unemployed (LFU) (in thousands).
- Statistics Lithuania, Labour remuneration survey data:
 - number of employees (Emp) (in thousands);
 - resource for remuneration (RRS) (in millions of Euros).
- Labour Exchange office data:
 - number for registered unemployment (EU) (in thousands).
- Administrative data of the Social insurance institution Sodra:
 - enterprise remuneration, from which taxes are paid (RSI) (in millions of Euros)

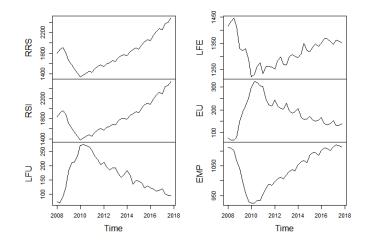


Figure 1: Graphical view of the quarterly data in 2008-2017

Julija Janeiko, Vytautas Panknas

Coherence studies in time series

August 21-24, 2018

13 / 29

Table 1: Correlation matrix of data

	RRS	RSI	LFU	LFE	EU	EMP
RRS	1.0000	0.9997	-0.8602	0.6716	-0.7274	0.9085
RSI		1.0000	-0.8625	0.6782	-0.7327	0.9082
LFU			1.0000	-0.8927	0.9512	-0.9673
LFE				1.0000	-0.9278	0.8109
EU					1.0000	-0.8962
EMP						1.0000

The differentiated time series $x_k - x_{k-1}$ and $y_k - y_{k-1}$ are used.

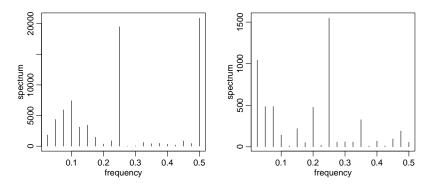


Figure 2: Periodograms of LFU (left) and RSI (right)

The frequency $\omega = 0.25 = \omega_{10}/2\pi$ with the corresponding period $T = 1/\omega = 4$ – four quarters is the most important. Julija Janeiko, Vytautas Panknas Coherence studies in time series August 21-24, 2018

Coherence coefficient

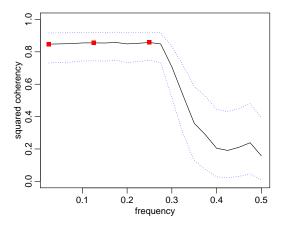


Figure 3: Coherence between LFU and RSI

Table 2: Coherence coefficients and squared correlation coefficient between LFU and RSI $% \left({{\rm{C}}{\rm{FU}}} \right)$

T (years)	ω	$\cosh^2_{xy}(\omega)$
10	0.025	0.8475
2	0.125	0.8554
1	0.25	0.8577
$\rho^2(x,y)$		0.7438

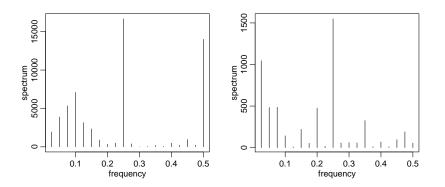


Figure 4: Periodograms of RSS (left) and RSI (right)

GEDIMINO

Coherence coefficient

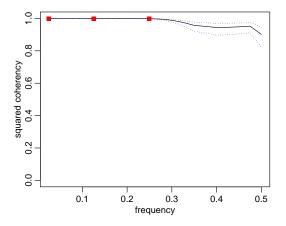


Figure 5: Coherence between RRS and RSI

Table 3: Coherence coefficients and squared correlation coefficient between RRS and RSI $% \left({{{\rm{RS}}} \right)$

T (years)	ω	$\cosh^2_{xy}(\omega)$
10	0.025	0.9995
2	0.125	0.9995
1	0.25	0.9988
$\rho^2(x,y)$		0.9993

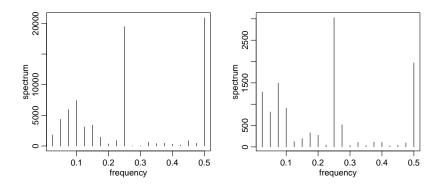


Figure 6: Periodograms of LFU (left) and EU (right)

Coherence coefficient

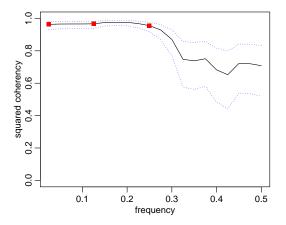


Figure 7: Coherence between LFU and EU

Table 4: Coherence coefficients and squared correlation coefficient between LFU and EU

T (years)	ω	$\cosh^2_{xy}(\omega)$
10	0.025	0.9634
2	0.125	0.9668
1	0.25	0.9554
$\rho^2(x,y)$		0.9048

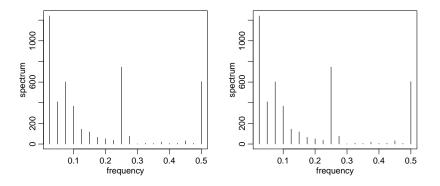


Figure 8: Periodograms of LFE (left) and EMP (right)

Coherence coefficient

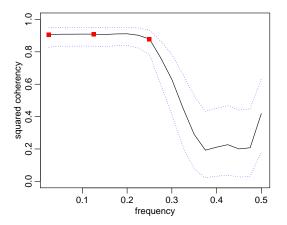


Figure 9: Coherence between LFE and EMP

Table 5: Coherence coefficients and squared correlation coefficient between LFE and EMP

T (years)	ω	$\cosh^2_{xy}(\omega)$
10	0.025	0.9052
2	0.125	0.9091
1	0.25	0.8791
$\rho^2(x,y)$		0.6575

- Open question Pearsons correlation coefficient or coherence?
- Great tool to measure the strength of relationship between two processes.
- Oifference of populations
- Coherence coefficient values are higher than squared correlation.

Shumway R. H. and Stoffer D. S. (2006), *Time Series Analysis and Its Applications*, Springer Texts in Statistics, DOI = 10.1007/978-3-319-52452-8.

Stoffer, D. (2017), astsa: Applied Statistical Time Series Analysis, R package version 1.8,

https://CRAN.R-project.org/package=astsa.

Wei W. W. S. (2006), *Time Series Analysis: Univariate and Multivariate Methods*, Pearson Education,

https://books.google.lt/books?id=aYOQAQAAIAAJ.

Thank you for your attention!